第二章第二章函数概念与基本初等函数函数概念与基本初等函数II2.32.3函数的奇偶性与周期性函数的奇偶性与周期性课内基础通关课内基础通关1函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数一般地,
函数的奇偶性与周期性Tag内容描述:
1、函数的奇偶性与周期性函数的奇偶性与周期性 考试要求 1.结合具体函数,了解函数奇偶性的含义. 2.会运用函数的图象理解和研究函数的奇偶性. 3.了解函数周期性最小正周期的含义,会判断应用简单函数的周期性 1函数的奇偶性 偶函数 奇函数 定义。
2、第二章第二章 函数概念与基本初等函数函数概念与基本初等函数 I I 2.32.3 函数的奇偶性与周期性函数的奇偶性与周期性 课内基础通关课内基础通关 1函数的奇偶性 奇偶性 定义 图象特点 偶函数 一般地,如果对于函数f(x)的定义域内任意一个x,都 有f(x)f(x),那么函数f(x)就叫做偶函数 关于y轴对称 奇函数 一般地,如果对于函数f(x)的定义域内任意一个x,都 有f(x)f(x),那么函数f(x)就叫做奇函数 关于原点对称 2.周期性 (1)周期函数:对于函数yf(x),如果存在一个非零常数T,使得当x取定义域内的任何值 时,都有f(xT)f(x),那么就称函数yf(x。
3、第3节 函数的奇偶性与周期性,最新考纲 1.结合具体函数,了解函数奇偶性的含义;2.会运用函数的图像理解和研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.,知 识 梳 理,1.函数的奇偶性 图像关于原点对称的函数叫作奇函数. 图像关于y轴对称的函数叫作偶函数.,2.函数的周期性 (1)周期函数:对于函数yf(x),如果存在非零常数T,对定义域内的任意一个x值,都有_______________,就把函数f(x)称为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中_____________的正数,那。
4、1函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)就叫做奇函数关于原点对称2.周期性(1)周期函数:对于函数yf(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(xT)f(x),那么就称函数yf(x)为周期函数,称T为这个函数的周期最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期【知识拓展】1函数。
5、公众号码:王校长资源站2.3函数的奇偶性与周期性最新考纲考情考向分析1.结合具体函数,了解函数奇偶性的含义2.会运用函数图象理解和研究函数的奇偶性3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.以理解函数的奇偶性、会用函数的奇偶性为主,常与函数的单调性、周期性交汇命题,加强函数与方程思想、转化与化归思想的应用意识,题型以选择、填空题为主,中等偏上难度.1函数的奇偶性奇偶性定义图象特点奇函数设函数yf(x)的定义域为D,如果对D内的任意一个x,都有xD,且f(x)f(x),则这个函数叫做奇函数关于坐标原点对。
6、第3讲 函数的奇偶性与周期性一、选择题1设f(x)为定义在R上的奇函数当x0时,f(x)2x2xb(b为常数),则f(1)等于()A3 B1 C1 D3解析由f(0)f(0),即f(0)0.则b1,f(x)2x2x1,f(1)f(1)3.答案D2已知定义在R上的奇函数,f(x)满足f(x2)f(x),则f(6)的值为 ()A1 B0 C1 D2解析(构造法)构造函数f(x)sin x,则有f(x2)sinsin xf(x),所以f(x)sin x是一个满足条件的函数,所以f(6)sin 30,故选B.答案B3定义在R上的函数f(x)满足f(x)f(x2),当x3,5时,f(x)2|x4|,则下列不等式一定成立的是。