书签 分享 收藏 举报 版权申诉 / 9
上传文档赚钱

类型2020届高三数学(理)“大题精练”13.docx

  • 上传人(卖家):四川天地人教育
  • 文档编号:998804
  • 上传时间:2021-01-05
  • 格式:DOCX
  • 页数:9
  • 大小:376.47KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2020届高三数学(理)“大题精练”13.docx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020 届高三 数学 精练 13 下载 _二轮专题_高考专区_数学_高中
    资源描述:

    1、 2020 届高三数学(理) “大题精练”13 17为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据 其尺寸的数据得到如图所示的频率分布直方图,若尺寸落在区间(2 ,2 )xs xs之外, 则认为该零件属“不合格”的零件,其中x,s 分别为样本平均数和样本标准差,计算可得 15s (同一组中的数据用该组区间的中点值作代表). (1)求样本平均数的大小; (2)若一个零件的尺寸是 100 cm,试判断该零件是否属于“不合格”的零件. 18如图,在三棱柱 111 ABCABC中, 11 1,2,1,ACBCABBCBC平面 ABC. (1)证明:平面 11 A ACC 平面

    2、 11 BCC B (2)求二面角 1 AB BC的余弦值. 19, ,a b c分别为ABC 的内角, ,A B C的对边.已知sin4sin8sinaABA. (1)若1, 6 bA ,求sinB; (2)已知 3 C ,当ABC的面积取得最大值时,求ABC的周长. 20已知函数 32 ( )21f xxmxm. (1)讨论 ( )f x的单调性; (2)若函数 ( )f x在区间0,)上的最小值为 3,求 m 的值. 21如图,已知抛物线 E:y2=4x 与圆 M:(x3)2+y2=r2(r0)相交于 A,B,C,D 四个点. (1)求 r 的取值范围; (2)设四边形 ABCD 的面积

    3、为 S,当 S 最大时,求直线 AD 与直线 BC 的交点 P 的坐标. 22在直角坐标系中,已知圆 222 :()(1)1Mxaya,以原点为极点,x 轴正 半轴为极轴建立极坐标系,已知直线sin2 4 平分圆 M 的周长. (1)求圆 M 的半径和圆 M 的极坐标方程; (2)过原点作两条互相垂直的直线 12 ,l l,其中 1 l与圆 M 交于 O,A 两点, 2 l与圆 M 交 于 O,B 两点,求OAB面积的最大值. 23已知正实数ab,满足4ab . (1)求 14 ab 的最小值. (2)证明: 22 1125 2 ab ab 2020 届高三数学(理) “大题精练”13(答案解

    4、析) 17为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据 其尺寸的数据得到如图所示的频率分布直方图,若尺寸落在区间(2 ,2 )xs xs之外, 则认为该零件属“不合格”的零件,其中x,s 分别为样本平均数和样本标准差,计算可得 15s (同一组中的数据用该组区间的中点值作代表). (1)求样本平均数的大小; (2)若一个零件的尺寸是 100 cm,试判断该零件是否属于“不合格”的零件. 【解】 (1)35 10 0.00545 10 0.010 55 10 0.015 65 10 0.030 x 75 10 0.02085 0.015 95 10 0.00566.5

    5、 (2)266.53096.5,266.53036.5, 10096.5xsxs 所以该零件属于“不合格”的零件 18如图,在三棱柱 111 ABCABC中, 11 1,2,1,ACBCABBCBC平面 ABC. (1)证明:平面 11 A ACC 平面 11 BCC B (2)求二面角 1 AB BC的余弦值. 【解】 (1)证明:因为 1 BC 平面 ABC,所以 1 BCAC 因为1,2ACBCAB.所以 222 ACBCAB .即AC BC 又 1 BCBCC.所以AC 平面 11 BCC B 因为AC 平面 11 A ACC.所以平面 11 A ACC 平面 11 BCC B (2)

    6、解:由题可得 1 ,BC CA CB两两垂直,所以分别以 1 ,CA CB BC所在直线为 x 轴, y 轴.轴,建立如图所示的空间直角坐标系 C-xyz,则 1 (1,0,0),(0,0,0), (0,1,0),(0,0,1)ACBB,所以 1 (0, 1,1),( 1,1,0)BBAB 设平面 1 ABB的一个法向量为 ( , , )mx y z, 由 1 0,0m BBm AB.得 0 0 yz xy 令1x ,得(1,1,1)m 又CA平面 1 CBB,所以平面 1 CBB的一个法向量为CA (1,0,0). 13 cos, 33 m CA 所以二面角 1 AB BC的余弦值为 3 3

    7、 . 19, ,a b c分别为ABC 的内角, ,A B C的对边.已知sin4sin8sinaABA. (1)若1, 6 bA ,求sinB; (2)已知 3 C ,当ABC的面积取得最大值时,求ABC的周长. 【解】 (1)由sin4sin8sinaABA,得48a aba, 即48ab. 因为1b ,所以4a . 由 41 sin sin 6 B ,得 1 sin 8 B . (2)因为482 44ababab, 所以4ab,当且仅当44ab时,等号成立. 因为ABC的面积 11 sin4 sin3 223 SabC . 所以当44ab时,ABC的面积取得最大值, 此时 222 412

    8、 4 1 cos13 3 c ,则 13c , 所以ABC的周长为513. 20已知函数 32 ( )21f xxmxm. (1)讨论 ( )f x的单调性; (2)若函数 ( )f x在区间0,)上的最小值为 3,求 m 的值. 【解】 (1) 2 ( )622 (3)fxxmxxxm 若0m,当(,0), 3 m x 时,( )0fx ; 当0, 3 m x 时.( )0fx , 所以 ( )f x在(,0), 3 m 上单调递增,在0, 3 m 上单调递减 若0,( ) 0mfx . ( )f x在 R 上单调递增 若0m ,当,(0,) 3 m x 时,( )0fx ; 当,0 3 m

    9、 x 时.( )0fx , 所以 ( )f x在,(0,) 3 m 上单调递增,在,0 3 m 上单调递减 (2)由(1)可知,当0m 时, ( )f x在0,)上单调递增,则 min ( )(0)13f xfm .则 -4m 不合题意 当0m时, ( )f x在0, 3 m 上单调递减,在, 3 m 上单调递增. 则 33 min 2 ( )13 3279 mmm f xfm ,即 3 40 27 m m 又因为 3 ( )4 27 m g mm单调递增,且 ( 3)0g ,故3m 综上,3m 21如图,已知抛物线 E:y2=4x 与圆 M:(x3)2+y2=r2(r0)相交于 A,B,C,

    10、D 四个点. (1)求 r 的取值范围; (2)设四边形 ABCD 的面积为 S,当 S 最大时,求直线 AD 与直线 BC 的交点 P 的坐标. 【解】(1)联立抛物线与圆的方程 2 222 4 , (3), yx xyr 消去 y,得 x22x+9r2=0. 由题意可知 x22x+9r2=0 在(0,+)上有两个不等的实数根, 所以 2 2 44(9)0, 90, r r 解得 2 2r3,即 r(22,3). (2)根据(1)可设方程 x22x+9r2=0 的两个根分别为 x1,x2(0x1x2), 则 A(x1,2 1 x),B(x1, 2 1 x),C(x2, 2 2 x),D(x2

    11、,2 2 x),且 x1+x2=2,x1x2=9r2, 所以 S= 1 2 (AB+CD) (x2x1)= 1 2 (4 1 x+4 2 x)(x2x1) =2 1212 2xxx x 2 1212 ()4xxx x=2 2 22 9r 2 44(9)r . 令 t= 2 9r (0,1),f(t)=S2=4(2+2t)(44t2)= 32(t3+t2t1), f(t)= 32(3t2+2t1)= 32(t+1)(3t1),可得 f(t)在(0, 1 3 )上单调递增,在( 1 3 ,1)上单调递 减,即当 t= 1 3 时,四边形 ABCD 的面积取得最大值. 根据抛物线与圆的对称性,可设P

    12、点坐标为(m,0),由P,A,D三点共线,可得 21 21 22xx xx = 1 1 2 m x x ,整理得 m= 12 x x=t= 1 3 , 所以点 P 的坐标为( 1 3 ,0). 22在直角坐标系中,已知圆 222 :()(1)1Mxaya,以原点为极点,x 轴正 半轴为极轴建立极坐标系,已知直线sin2 4 平分圆 M 的周长. (1)求圆 M 的半径和圆 M 的极坐标方程; (2)过原点作两条互相垂直的直线 12 ,l l,其中 1 l与圆 M 交于 O,A 两点, 2 l与圆 M 交 于 O,B 两点,求OAB面积的最大值. 【解】 (1)将sin2 4 化成直角坐标方程,

    13、得2xy 则12a ,故1a , 则圆 22 :(1)(1)2Mxy,即 22 220 xyxy, 所以圆 M 的半径为 2. 将圆 M 的方程化成极坐标方程,得 2 2 (sincos )0. 即圆 M 的极坐标方程为2(sincos ). (2)设 1 :212 ,:,|,| 2 llOAOB , 则 1 2(sincos), 用 2 代替.可得 2 2(cossin), 22 12 1 ,| | 2 cossin2cos22 2 OHB llSOAOB max2 OAB S 23已知正实数ab,满足4ab . (1)求 14 ab 的最小值. (2)证明: 22 1125 2 ab ab 【解】 (1)因为4ab ,所以 141414 5 44 abba ababab 因为00ab, ,所以 4 4 ba ab (当且仅当 4ba ab ,即 48 , 33 ab 时等号 成立) , 所以 1419 5(54) 444 ba ab (2)证明: 22 22 1111 4 11 22 ab abab ab ab 因为4ab ,所以 1111111 ()2(22)1 444 ab ab ababba 故 22 1125 2 ab ab (当且仅当2ab 时,等号成立)

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020届高三数学(理)“大题精练”13.docx
    链接地址:https://www.163wenku.com/p-998804.html
    四川天地人教育
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库