2019届高考二轮数学复习专题三 第1讲 空间几何体中的计算与位置关系(理)(教师版).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2019届高考二轮数学复习专题三 第1讲 空间几何体中的计算与位置关系(理)(教师版).docx》由用户(secant)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019届高考二轮数学复习专题三 第1讲空间几何体中的计算与位置关系理教师版 2019 高考 二轮 数学 复习 专题 空间 几何体 中的 计算 位置 关系 教师版 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、 1.以三视图和空间几何体为载体考查面积与体积,难度中档偏下; 2.以选择题、填空题的形式考查线线、线面、面面位置关系的判定与性质定理对命题的真假进行判断,属基础 题;空间中的平行、垂直关系的证明也是高考必考内容,多出现在立体几何解答题中的第(1)问. 1.空间几何体的三视图:长对正、高平齐、宽相等. 2.空间几何体的两组常用公式 (1)正柱体、正锥体、正台体的侧面积公式: S柱侧ch(c 为底面周长,h 为高); S锥侧1 2ch(c 为底面周长,h为斜高/母线); S台侧1 2(cc)h(c,c 分别为上下底面的周长,h为斜高/母线); S球表4R2(R 为球的半径). (2)柱体、锥体和
2、球的体积公式: V柱体Sh(S 为底面面积,h 为高); V锥体1 3Sh(S 为底面面积,h 为高); V球4 3R 3. 3.直线、平面平行的判定及其性质 (1)线面平行的判定定理:a?,b?,ab?a. (2)线面平行的性质定理:a,a?,b?ab. (3)面面平行的判定定理:a?,b?,abP,a,b?. (4)面面平行的性质定理:,a,b?ab. 4.直线、平面垂直的判定及其性质 (1)线面垂直的判定定理:m?,n?,mnP,lm,ln?l. (2)线面垂直的性质定理:a,b?ab. (3)面面垂直的判定定理:a?,a?. 知识与技巧的梳理知识与技巧的梳理 考向预测考向预测 专题三专
3、题三 第第 1 1 讲讲 空间几何体中的计算与位置关系空间几何体中的计算与位置关系 立体几何立体几何 (4)面面垂直的性质定理:,l,a?,al?a. 热点一 空间几何体的三视图与表面积、体积 【例 1】 (2018 上饶期末)如图所示为一个几何体的三视图,则该几何体的表面积为( ) A6 B44? C86? D46? 解析 根据三视图可得该几何体是有一个圆柱挖去两个 1 4 圆柱所得,作出几何体的直观图(如图) , 则该几何体的表面积为 2 21 212 2 286S? ? ? ? ? 答案 C 探究提高 1.由几何体的三视图求其表面积: (1)关键是分析三视图确定几何体中各元素之间的位置关
4、系及度量 大小.(2)还原几何体的直观图,套用相应的面积公式. 2.求三棱锥的体积:等体积转化是常用的方法,转换原则是其高易求,底面放在已知几何体的某一面上. 3.求不规则几何体的体积:常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解. 【训练 1】 (1)(2017 北京卷)某三棱锥的三视图如图所示,则该三棱锥的体积为( ) A.60 B.30 C.20 D.10 (2)(2017 枣庄模拟)如图,某三棱锥的三视图是三个边长相等的正方形及对角线,若该三棱锥的体积是1 3,则它 的表面积是_. 热点题型热点题型 解析 (1)由三视图知可把三棱锥放在一个长方体内部,即三棱锥 A1B
5、CD, 1 ABCD V ? 1 3 1 235410. (2)由题设及几何体的三视图知,该几何体是一个正方体截去 4 个三棱锥后剩余的内接正三棱锥 BA1C1D(如 图所示). 设正方体的棱长为 a,则几何体的体积是 Va341 3 1 2a 2a1 3a 31 3, a1,三棱锥的棱长为 2,因此该三棱锥的表面积为 S4 3 4 ( 2)22 3. 答案 (1)D (2)2 3 热点二 外接球与内切球 【例 2】 (2019 广东一模) 九章算术 中将底面为长方形, 且有一条侧棱与底面垂直的四棱锥称之为“阳马”. 现有一阳马,其正视图和侧视图是如图所示的直角三角形若该阳马的顶点都在同一个球
6、面上,则该球的体积 为( ) A6 B 8 6 3 C8 6 D24 解析 如图所示,该几何体为四棱锥PABCD?,底面ABCD为长方形. 其中PD ?底面ABCD,1AB ?,2AD ?,1PD ?.易知该几何体与变成为1,2,1的长方体有相同的外接球, 则该阳马的外接球的直径为 222 1216PB ?.球体积为: 3 46 6 32 ? ? ? ? ? ? . 答案 A. 探究提高 1.与球有关的组合体问题, 一种是内切, 一种是外接.球与旋转体的组合通常是作它们的轴截面解题, 球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平 面问题. 2
7、.若球面上四点 P,A,B,C 中 PA,PB,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方 体确定直径解决外接问题. 【训练 2】 (2017 全国卷)已知圆柱的高为 1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该 圆柱的体积为( ) A. B.3 4 C. 2 D. 4 解析 如图画出圆柱的轴截面 ABCD,O 为球心.球半径 ROA1,球心到底面圆的距离为 OM1 2. 底面圆半径 r OA2OM2 3 2 ,故圆柱体积 Vr2h? ? ? ? 3 2 2 13 4 . 答案 B 热点三 空间平行、垂直关系的判断与证明 【例 3】(2017 全国卷)如图,在
展开阅读全文