2019届高考二轮数学复习专题六 第1讲 选修4-4 坐标系与参数方程(学生版).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2019届高考二轮数学复习专题六 第1讲 选修4-4 坐标系与参数方程(学生版).docx》由用户(secant)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019届高考二轮数学复习专题六 第1讲选修4-4 坐标系与参数方程学生版 2019 高考 二轮 数学 复习 专题 选修 坐标系 参数 方程 学生 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、 11111111 高考主要考查平面直角坐标系中的伸缩变换、直线和圆的极坐标方程;参数方程与普通方程的互化,常见 曲线的参数方程及参数方程的简单应用以极坐标、参数方程与普通方程的互化为主要考查形式,同时考查直 线与曲线位置关系等解析几何知识 1直角坐标与极坐标的互化 把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位设 M 是平面内的 任意一点,它的直角坐标、极坐标分别为(x,y)和(,),则 ? ? ? ?xcos , ysin ,? ? ? ? ? 2x2y2, tan y x(x0). 2直线的极坐标方程 若直线过点 M(0,0),且极轴到此直线的角为 ,则
2、它的方程为 sin()0sin(0) 几个特殊位置的直线的极坐标方程: (1)直线过极点:; (2)直线过点 M(a,0)(a0)且垂直于极轴:cosa; (3)直线过 M? ? ? ? b, 2 且平行于极轴:sinb 3圆的极坐标方程 几个特殊位置的圆的极坐标方程: (1)当圆心位于极点,半径为 r:r; (2)当圆心位于 M(r,0),半径为 r:2rcos; (3)当圆心位于 M? ? ? ? r, 2 ,半径为 r:2rsin 4直线的参数方程 知识与技巧的梳理知识与技巧的梳理 考向预测考向预测 专题六专题六 第第 1 1 讲讲 选修选修 4 4- -4 4 坐标系与参数方程坐标系与
3、参数方程 选修部分选修部分 经过点 P0(x0,y0),倾斜角为 的直线的参数方程为 ? ? ? ?xx0tcos , yy0tsin (t 为参数) 设 P 是直线上的任一点,则 t 表示有向线段P0P 的数量 5圆、椭圆的参数方程 (1)圆心在点 M(x0,y0),半径为 r 的圆的参数方程为 ? ? ? ?xx0rcos , yy0rsin ( 为参数,02) (2)椭圆x 2 a2 y2 b21 的参数方程为? ? ? ? ?xacos , ybsin ( 为参数) 热点一 曲线的极坐标方程 【例 1】(2019 呼和浩特期中)在直角坐标系xOy中,以O为极点,轴的正半轴为极轴建立极坐
4、标系,已知曲线 1 C的极坐标方程为sin4?,曲线 2 C的极坐标方程为 2 2 cos4 sin10? ?,曲线 3 C的极坐标方程为 ? 4 ?R ()求 1 C与 2 C的直角坐标方程; ()若 2 C与 1 C的交于P点, 2 C与 3 C交于A、B两点,求PAB的面积 解()曲线 1 C的极坐标方程为sin4?, 根据题意,曲线 1 C的普通方程为4y ? 曲线 2 C的极坐标方程为 2 2 cos4 sin10? ?, 曲线 2 C的普通方程为 22 2410xyxy? ?,即? 22 124xy?, ()曲线 3 C的极坐标方程为? 4 ?R, 曲线 3 C的普通方程为yx?,
5、 联立 1 C与 2 C: ? 22 4 114 y xy ? ? ? ? ? ,得 2 210xx? ?,解得1x ?, 点P的坐标?1,4,点P到 3 C的距离 143 2 22 d ? ?. 设? 11 ,A? ?,? 22 ,B? ?将 4 ?代入 2 C,得 2 3 210? ?, 则 12 3 2?, 12 1?, ? 2 121212 414AB? ?, 热点题型热点题型 113 23 7 14 2222 PAB SAB d? 探究提高 进行极坐标方程与直角坐标方程互化的关键是抓住互化公式: xcos , ysin , 2x2y2, tan y x(x0),要注意 , 的取值范围
6、及其影响,灵活运用代入法和平方法等技巧 【训练 1】 (2017 北京东城区调研)在极坐标系中, 已知极坐标方程 C1: cos 3sin 10, C2: 2cos (1)求曲线 C1,C2的直角坐标方程,并判断两曲线的形状; (2)若曲线 C1,C2交于 A,B 两点,求两点间的距离 解 (1)由 C1:cos 3sin 10, x 3y10,表示一条直线由 C2:2cos ,得 22cos x2y22x,则(x1)2y21, C2是圆心为(1,0),半径 r1 的圆 (2)由(1)知,点(1,0)在直线 x 3y10 上,因此直线 C1过圆 C2的圆心 两交点 A,B 的连线段是圆 C2的
7、直径, 因此两交点 A,B 间的距离|AB|2r2 热点二 参数方程及其应用 【例 2】 (2019 湖北联考)在直角坐标系xOy中, 曲线 22cos : 2sin x C y ? ? ? ? ? ? (?为参数) , 直线 1cos : sin xt l yt ? ? ? ? ? ? ? ? (t 为参数) ,以O为极点,x轴的非负半轴为极轴建立极坐标系. (1)求曲线C与直线?的极坐标方程(极径用?表示,极角用?表示) ; (2)若直线l与曲线C相交,交点为A、B,直线l与x轴也相交,交点为Q,求QAQB?的取值范围. 解(1)曲线? 2 2 :24Cxy?,即 22 4xyx?,即 2
展开阅读全文