高中数学必修一至必修五知识点总结.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学必修一至必修五知识点总结.doc》由用户(青草浅笑)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 知识点 总结 下载 _其他_数学_高中
- 资源描述:
-
1、富宁一中 高中数学必修 1 至必修 5 知识点总结(复习专用) 人教版 - 1 - 必修必修 1 1 第一章第一章 集合与函数概念集合与函数概念 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性;2.元素的互异性;3.元素的无序性 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集 Z 有理数集 Q 实数集 R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a 是集合 A 的元素,就说 a 属于集合 A 记作 aA , 相反,a 不属于集合 A 记作 aA 二、集合间的基本
2、关系 任何一个集合是它本身的子集。AA 真子集:如果 AB,且 B A 那就说集合 A 是集合 B 的真子集,记作 A B(或 B A) 3. 不含任何元素的集合叫做空集,记为 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的运算 1交集的定义:一般地,由所有属于 A 且属于 B 的元素所组成的集合,叫做 A,B 的交集(即找公 共部分)记作 AB(读作”A 交 B”),即 AB=x|xA,且 xB 2、并集的定义:一般地,由所有属于集合 A 或属于集合 B 的元素所组成的集合,叫做 A,B 的并集。 (即 A 和 B 中所有的元素)记作:AB(读作”A 并 B”),即
3、 AB=x|xA,或 xB 4、全集与补集 (1)补集:设 S 是一个集合,A 是 S 的一个子集(即 ) ,由 S 中所有不属于 A 的元素组成的集合, 叫做 S 中子集 A 的补集(或余集) (即除去 A 剩下的元素组成的集合) 四、函数的有关概念 定义域补充 能使函数式有意义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、 对数式的底必须大于零且不等于 1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么, 它的 定义域是使各部分都有意义的
4、x 的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的 定义域还要保证实际问题有意义. (又注意:求出不等式组的解集即为函数的定义域。) 构成函数的三要素:定义域、对应关系和值域 4了解区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示 7函数单调性 (1) 增函数 设函数 y=f(x)的定义域为 I, 如果对于定义域 I 内的某个区间 D 内的任意两个自变量 a, b, 当 ab 时, 都有 f(a)f(b),那么就说 f(x)在区间 D 上是增函数。区间 D 称为 y=f(x)的单调增区间(睇清楚课本单调 区间的概念)
5、如果对于区间 D 上的任意两个自变量的值 a,b,当 ab 时,都有 f(a)f(b),那么就说 f(x)在这个 区间上是减函数.区间 D 称为 y=f(x)的单调减区间. 注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 2 必须是对于区间 D 内的任意两个自变量 a,b;当 ab 时,总有 f(a)f(b) 。 (2) 图象的特点 如果函数 y=f(x)在某个区间是增函数或减函数,那么说函数 y=f(x)在这一区间上具有(严格的)单调 性,在单调区间上增函数的图象从左到右是上升的,减 函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A) 定义
6、法:任取 a,bD,且 a1 0a1 0a L A B 公理 1 作用:判断直线是否在平面内. (2)公理 2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A、B、C 三点不共线 = 有且只有一个平面, 使 A、B、C。 公理 2 作用:确定一个平面的依据。 (3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P =L,且 PL 公理 3 作用:判定两个平面是否相交的依据. 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; L A P L 共面直线 富宁一中
7、高中数学必修 1 至必修 5 知识点总结(复习专用) 人教版 - 7 - 平行直线: 同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理 4:平行于同一条直线的两条直线互相平行。 符号表示为:设 a、b、c 是三条直线 ab cb 强调:公理 4 实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理 4 作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 4 注意点: a与 b所成的角的大小只由 a、b 的相互位置来确定,与O的选择无关, 为了简便,点O一般取在两直线中的一条上; 两条异面直线所
8、成的角(0, 2 ); 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作 ab; 两条直线互相垂直,有共面垂直与异面垂直两种情形; 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 2.1.3 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内 有无数个公共点 (2)直线与平面相交 有且只有一个公共点 (3)直线在平面平行 没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用 a 来表示 a a=A a 2.2.直线、平面平行的判定及其性质 2.2.1 直线与平面平行的判定 1、直线与平面
9、平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平 行。 简记为:线线平行,则线面平行。 符号表示: a b = a ab 2.2.2 平面与平面平行的判定 1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。 符号表示: a b ab = P = a =ac 富宁一中 高中数学必修 1 至必修 5 知识点总结(复习专用) 人教版 - 8 - b 2、判断两平面平行的方法有三种: (1)用定义; (2)判定定理; (3)垂直于同一条直线的两个平面平行。 2.2.3 2.2.4 直线与平面、平面与平面平行的性质 1、直线与平面平行的性质定
展开阅读全文