2021年高考数学二轮专题复习课件:专题六 函数与导数 .ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年高考数学二轮专题复习课件:专题六 函数与导数 .ppt》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021年高考数学二轮专题复习课件:专题六 函数与导数 2021 年高 数学 二轮 专题 复习 课件 函数 导数 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、专题六专题六 函数与导数函数与导数 专题六 函数与导数 真题研析 命题分析 知识方法 类型一类型一 函数的图象和性质函数的图象和性质 1 (2020 全国卷全国卷)设函数设函数 f(x)x3 1 x3, 则 , 则 f(x)( ) A是奇函数,且在是奇函数,且在(0,)单调递增单调递增 B是奇函数,且在是奇函数,且在(0,)单调递减单调递减 C是偶函数,且在是偶函数,且在(0,)单调递增单调递增 D是偶函数,且在是偶函数,且在(0,)单调递减单调递减 解析:解析:因为函数因为函数 f(x)x3 1 x3定义域为 定义域为x|x0,其关,其关 于原点对称,于原点对称, 而而 f(x)f(x),所
2、以函数,所以函数 f(x)为奇函数为奇函数 专题六 函数与导数 真题研析 命题分析 知识方法 又因为函数又因为函数 yx3在在(0,)上单调递增,在上单调递增,在(, 0)上单调递增,上单调递增, 而而 y 1 x3 x 3 在在(0,)上单调递减,在上单调递减,在(,0) 上单调递减,上单调递减, 所以函数所以函数 f(x)x3 1 x3在 在(0,)上单调递增,在上单调递增,在( ,0)上单调递增上单调递增 答案:答案:A 专题六 函数与导数 真题研析 命题分析 知识方法 22020 新高考卷新高考卷(山东卷山东卷)若定义在若定义在 R 的奇函数的奇函数 f(x)在在(,0)单调递减,且单
3、调递减,且 f(2)0,则满足,则满足 xf(x1) 0 的的 x 的取值范围是的取值范围是( ) A1,13,) B3,10,1 C1,01,) D1,01,3 解析:解析:因为定义在因为定义在 R 上的奇函数上的奇函数 f(x)在在(,0)上上 单调递减,且单调递减,且 f(2)0, 所以所以 f(x)在在(0,)上也是单调递减,且上也是单调递减,且 f(2)0, f(0)0, 专题六 函数与导数 真题研析 命题分析 知识方法 所以当所以当 x(,2)(0,2)时,时,f(x)0,当,当 x( 2,0)(2,)时,时,f(x)0, 所以由所以由 xf(x1)0 可得:可得: x0, , 0
4、 x12或或x12, 或或 x0. 解得解得1x0 或或 1x3,所以满足,所以满足 xf(x1)0 的的 x 的取值范围是的取值范围是1,01,3 答案:答案:D 专题六 函数与导数 真题研析 命题分析 知识方法 3(2019 全国卷全国卷)函数函数 f(x) sin xx cos xx2在 在, 的图象大致为的图象大致为( ) 专题六 函数与导数 真题研析 命题分析 知识方法 解析:解析:因为因为 f(x) sin(x)x cos(x)()(x)2 sin xx cos xx2 f(x),所以,所以 f(x)为奇函数,排除选项为奇函数,排除选项 A. 令令 x,则,则 f() sin co
5、s 2 120,排除选项 ,排除选项 B、C.故选故选 D. 答案:答案:D 专题六 函数与导数 真题研析 命题分析 知识方法 4 (2018 全国卷全国卷)设函数设函数 f(x) 2 x, ,x0, 1,x0, 则满足则满足 f(x1)0 的图象如图所示:的图象如图所示: 专题六 函数与导数 真题研析 命题分析 知识方法 满足满足 f(x1)f(2x), 可得可得 2x0x1 或或 2xx10, 解得解得 x(,0) 答案:答案:D 专题六 函数与导数 真题研析 命题分析 知识方法 类型二类型二 基本初等函数、函数与方程基本初等函数、函数与方程 1(2020 全国卷全国卷)设设 alog34
6、2,则,则 4 a ( ) A. 1 16 B. 1 9 C. 1 8 D. 1 6 解析:解析:由由 alog342 可得可得 log34a2,所以,所以 4a9,所,所 以有以有 4 a 1 9,故选 ,故选 B. 答案:答案:B 专题六 函数与导数 真题研析 命题分析 知识方法 2(2020 全国卷全国卷)Logistic 模型是常用数学模型之模型是常用数学模型之 一, 可应用于流行病学领域 有学者根据公布数据建立了一, 可应用于流行病学领域 有学者根据公布数据建立了 某地区新冠肺炎累计确诊病例数某地区新冠肺炎累计确诊病例数 I(t)(t 的单位:天的单位:天)的的 Logistic 模
7、型:模型: I(t) K 1e 0.23(t53), 其中, 其中 K 为最大确诊病为最大确诊病 例数当例数当 I(t*)0.95K 时,标志着已初步遏制疫情,则时,标志着已初步遏制疫情,则 t* 约为约为(ln 193)( ) A60 B63 C66 D69 专题六 函数与导数 真题研析 命题分析 知识方法 解 析 :解 析 : 因 为因 为 I(t) K 1e 0.23(t53), 所 以, 所 以 I(t*) K 1e0.23(t*53) 0.95K,则,则 e0.23(t*53)19, 所以,所以,0.23(t*53)ln 193,解得,解得 t* 3 0.23 5366. 答案:答案
8、:C 专题六 函数与导数 真题研析 命题分析 知识方法 3(2020 全国卷全国卷)已知已知 5584,13485.设设 alog53, blog85,clog138,则,则( ) Aabc Bbac Cbca Dcab 解析:解析:由题意可知由题意可知 a、b、c(0,1), a b log53 log85 lg 3 lg 5 lg 8 lg 5 1 (lg 5)2 lg 3lg 8 2 2 lg 3lg 8 2lg 5 2 lg 24 lg 25 21, , 专题六 函数与导数 真题研析 命题分析 知识方法 所以所以 ab; 由; 由 blog85, 得, 得 8b5, 由, 由 5584
9、, 得, 得 85b84, 所以所以 5b4,可得,可得 b4 5; ; 由由 clog138,得,得 13c8,由,由 13485,得,得 1344,可得,可得 c4 5. 综上所述,综上所述,abc. 答案:答案:A 专题六 函数与导数 真题研析 命题分析 知识方法 4(2020 全国卷全国卷)若若 2x2y0 Bln (yx1)0 Dln|xy|0 解析:解析:由由 2x2y3 x 3 y, ,得得 2x3 x2y 3 y, , 令令 f(t)2t3 t,因为 ,因为 y2x为为 R 上的增函数,上的增函数,y3 x 为为 R 上的减函数,上的减函数, 所以所以 f(t)为为 R 上的增
展开阅读全文