3.不含参数的极值点偏移问题.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《3.不含参数的极值点偏移问题.doc》由用户(secant)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 参数 极值 偏移 问题 下载 _考试试卷_数学_高中
- 资源描述:
-
1、. 3 3 不含参数的极值点偏移问题不含参数的极值点偏移问题 函数的极值点偏移问题,其实是导数应用问题,呈现的形式往往非常简洁,涉及函数的双零点,是一个多 元数学问题,不管待证的是两个变量的不等式,还是导函数的值的不等式,解题的策略都是把双变量的等 式或不等式转化为一元变量问题求解,途径都是构造一元函数. 例 1:已知函数( )() x f xxexR ? ? ,如果 12 xx?,且 12 ( )()f xf x?. 证明: 12 2.xx? 构造函数( )(1)(1),(0,1F xfxfx x?, 则0) 1()1 ( )1 ( )( 2 1 ? ? x x e e x xfxfxF,
2、所以( )F x在(0,1x?上单调递增,( )(0)0F xF?, 也即(1)(1)fxfx?对(0,1x?恒成立. 由 12 01xx? ?,则 1 1(0,1x?, 所以 11112 (1 (1)(2)(1 (1)( )()fxfxfxf xf x?, 即 12 (2)()fxf x?,又因为 12 2,(1,)x x?,且( )f x在(1,)?上单调递减, 所以 12 2xx?,即证 12 2.xx? . 法法 2 2:由 12 ( )()f xf x?,得 12 12 xx xex e ? ?,化简得 21 2 1 xx x e x ? ?, 不妨设 21 xx?,由法一知, 12
展开阅读全文