书签 分享 收藏 举报 版权申诉 / 16
上传文档赚钱

类型高考数学 12类二级结论高效解题.doc

  • 上传人(卖家):青草浅笑
  • 文档编号:926415
  • 上传时间:2020-12-06
  • 格式:DOC
  • 页数:16
  • 大小:1.20MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高考数学 12类二级结论高效解题.doc》由用户(青草浅笑)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高考 数学 12 二级 结论 高效 解题 下载 _一轮复习_高考专区_数学_高中
    资源描述:

    1、 考前冲刺一考前冲刺一 12 类二级结论高效解题类二级结论高效解题 高中数学二级结论在解题中有其高明之处,不仅简化思维过程,而且可以提高解 题速度和准确度,记住这些常用二级结论,可以帮你理清数学套路,节约做题时 间,从而轻松拿高分. 结论 1 奇函数的最值性质 已知函数 f(x)是定义在区间 D 上的奇函数,则对任意的 xD,都有 f(x)f(x) 0.特别地,若奇函数 f(x)在 D 上有最值,则 f(x)maxf(x)min0,且若 0D,则 f(0)0. 【例 1】 设函数 f(x)(x1) 2sin x x21 的最大值为 M,最小值为 m,则 Mm _. 解析 显然函数 f(x)的定

    2、义域为 R, f(x)(x1) 2sin x x21 12xsin x x21 , 设 g(x)2xsin x x21 ,则 g(x)g(x), g(x)为奇函数, 由奇函数图象的对称性知 g(x)maxg(x)min0, Mmg(x)1maxg(x)1min 2g(x)maxg(x)min2. 答案 2 【训练 1】 已知函数 f(x)ln( 19x23x)1,则 f(lg 2)f lg 1 2 ( ) A.1 B.0 C.1 D.2 解析 令 g(x)ln(19x23x),xR,则 g(x)ln( 19x23x),因为 g(x) g(x)ln( 19x23x)ln(19x23x)ln(19

    3、x29x2)ln 10, 所以g(x) 是定义在 R 上的奇函数. 又 lg 1 2lg 2,所以 g(lg 2)g lg 1 2 0, 所以 f(lg 2)f lg 1 2 g(lg 2)1g lg 1 2 12. 答案 D 结论 2 函数周期性问题 已知定义在 R 上的函数 f(x),若对任意的 xR,总存在非零常数 T,使得 f(xT) f(x),则称 f(x)是周期函数,T 为其一个周期. 常见的与周期函数有关的结论如下: (1)如果 f(xa)f(x)(a0),那么 f(x)是周期函数,其中的一个周期 T2a. (2)如果 f(xa) 1 f(x)(a0),那么 f(x)是周期函数,

    4、其中的一个周期 T2a. (3)如果 f(xa)f(x)c(a0),那么 f(x)是周期函数,其中的一个周期 T2a. 【例 2】 (1)已知定义在 R 上的函数 f(x)满足 f x3 2 f(x),且 f(2)f(1) 1,f(0)2,则 f(1)f(2)f(3)f(2 019)f(2 020)( ) A.2 B.1 C.0 D.1 (2)(多选题)(2020 济南模拟)函数 f(x)的定义域为 R,且 f(x1)与 f(x2)都为奇函 数,则( ) A.f(x)为奇函数 B.f(x)为周期函数 C.f(x3)为奇函数 D.f(x4)为偶函数 解析 (1)因为 f x3 2 f(x), 所

    5、以 f(x3)f x3 2 f(x),则 f(x)的周期 T3. 则有 f(1)f(2)1,f(2)f(1)1,f(3)f(0)2, 所以 f(1)f(2)f(3)0, 所以 f(1)f(2)f(3)f(2 019)f(2 020) f(1)f(2)f(3)f(2 017)f(2 018)f(2 019)f(2 020) 673f(1)f(2)f(3)f(2 020)0f(1)1. (2)法一 由 f(x1)与 f(x2)都为奇函数知,函数 f(x)的图象关于点(1,0),(2, 0)对称,所以 f(x)f(2x)0,f(x)f(4x)0,所以 f(2x)f(4x),即 f(x)f(2x),所

    6、以 f(x)是以 2 为周期的周期函数.又 f(x1)与 f(x2)都为奇函数, 所以 f(x),f(x3),f(x4)均为奇函数.故选 ABC. 法二 由 f(x1)与 f(x2)都为奇函数知,函数 f(x)的图象关于点(1,0),(2,0) 对称,所以 f(x)的周期为 2|21|2,所以 f(x)与 f(x2),f(x4)的奇偶性相同, f(x1)与 f(x3)的奇偶性相同,所以 f(x),f(x3),f(x4)均为奇函数.故选 ABC. 答案 (1)B (2)ABC 【训练 2】 奇函数 f(x)的定义域为 R.若 f(x2)为偶函数, 且 f(1)1, 则 f(8)f(9) ( )

    7、A.2 B.1 C.0 D.1 解析 由 f(x2)是偶函数可得 f(x2)f(x2), 又由 f(x)是奇函数得 f(x2)f(x2), 所以 f(x2)f(x2),f(x4)f(x),f(x8)f(x). 故 f(x)是以 8 为周期的周期函数,所以 f(9)f(81)f(1)1. 又 f(x)是定义在 R 上的奇函数,所以 f(0)0,所以 f(8)f(0)0,故 f(8)f(9) 1. 答案 D 结论 3 函数的对称性 已知函数 f(x)是定义在 R 上的函数. (1)若 f(ax)f(bx)恒成立,则 yf(x)的图象关于直线 xab 2 对称,特别地, 若 f(ax)f(ax)恒成

    8、立,则 yf(x)的图象关于直线 xa 对称. (2)若函数 yf(x)满足 f(ax)f(ax)0, 即 f(x)f(2ax), 则 f(x)的图象关于 点(a,0)对称. (3)若 f(ax)f(ax)2b 恒成立,则 yf(x)的图象关于点(a,b)对称. 【例 3】 (1)函数 yf(x)对任意 xR 都有 f(x2)f(x)成立,且函数 yf(x1) 的图象关于点(1, 0)对称, f(1)4, 则 f(2 016)f(2 017)f(2 018)的值为_. (2)(多选题)已知定义在 R 上的函数 f(x)满足 f(x)2f(2x),且 f(x)是偶函数,下 列说法正确的是( )

    9、A.f(x)的图象关于点(1,1)对称 B.f(x)是周期为 4 的函数 C.若 f(x)满足对任意的 x0,1,都有f(x 2)f(x1) x1x2 0,则 f(x)在3,2 上单调递增 D.若 f(x)在1,2上的解析式为 f(x)ln x1,则 f(x)在2,3上的解析式为 f(x)1 ln(x2) 解析 (1)因为函数 yf(x1)的图象关于点(1, 0)对称, 所以 f(x)是 R 上的奇函数, 又 f(x2)f(x),所以 f(x4)f(x2)f(x),故 f(x)的周期为 4. 所以 f(2 017)f(50441)f(1)4, 所以 f(2 016)f(2 018)f(2 01

    10、4)f(2 0144) f(2 014)f(2 014)0, 所以 f(2 016)f(2 017)f(2 018)4. (2)根据题意,f(x)的图象关于点(1,1)对称,A 正确;又 f(x)的图象关于 y 轴对称, 所以 f(x)f(x),则 2f(2x)f(x),f(x)2f(x2),从而 f(x2)2f(x 4),所以 f(x)f(x4),B 正确;由f(x 2)f(x1) x1x2 0),当且仅当 x1 时,等号成立. (2)指数形式:exx1(xR),当且仅当 x0 时,等号成立. 进一步可得到一组不等式链:exx1x1ln x(x0,且 x1). 【例 4】 已知函数 f(x)

    11、x1aln x. (1)若 f(x)0,求 a 的值; (2)证明:对于任意正整数 n, 11 2 1 1 22 1 1 2n e. (1)解 f(x)的定义域为(0,), 若 a0,因为 f 1 2 1 2aln 20,由 f(x)1a x xa x 知, 当 x(0,a)时,f(x)0; 所以 f(x)在(0,a)上单调递减,在(a,)上单调递增, 故 xa 是 f(x)在(0,)的唯一最小值点. 因为 f(1)0,所以当且仅当 a1 时,f(x)0,故 a1. (2)证明 由(1)知当 x(1,)时,x1ln x0. 令 x1 1 2n,得 ln 1 1 2n 1 2n. 从而 ln 1

    12、1 2 ln 1 1 22 ln 1 1 2n 1 2 1 22 1 2n1 1 2n1. 故 11 2 1 1 22 1 1 2n 0, ln(x1)x0, 得x|x1,且 x0,所以排除选项 D. 当 x0 时,由经典不等式 x1ln x(x0), 以 x1 代替 x,得 xln(x1)(x1,且 x0), 所以 ln(x1)x1,且 x0),排除 A,C,易知 B 正确. 答案 B (2)已知函数 f(x)ex, xR.证明: 曲线 yf(x)与曲线 y1 2x 2x1 有唯一公共点. 证明 令 g(x)f(x) 1 2x 2x1 ex1 2x 2x1,xR,则 g(x)exx1, 由经

    13、典不等式 exx1 恒成立可知,g(x)0 恒成立,所以 g(x)在 R 上为增函数, 且 g(0)0. 所以函数 g(x)有唯一零点,即两曲线有唯一公共点. 结论 5 三点共线的充要条件 设平面上三点 O,A,B 不共线,则平面上任意一点 P 与 A,B 共线的充要条件是 存在实数 与 ,使得OP OA OB ,且 1.特别地,当 P 为线段 AB 的中 点时,OP 1 2OA 1 2OB . 【例 5】 在ABC 中,AE 2EB,AF3FC,连接 BF,CE,且 BF 与 CE 交于 点 M,AM xAE yAF,则 xy 等于( ) A. 1 12 B. 1 12 C.1 6 D.1

    14、6 解析 因为AE 2EB,所以AE2 3AB , 所以AM xAE yAF2 3xAB yAF. 由 B,M,F 三点共线得2 3xy1. 因为AF 3FC,所以AF3 4AC , 所以AM xAE yAFxAE3 4yAC . 由 C,M,E 三点共线得 x3 4y1. 联立解得 x1 2, y2 3, 所以 xy1 2 2 3 1 6. 答案 C 【训练 5】 在梯形 ABCD 中,已知 ABCD,AB2CD,M,N 分别为 CD,BC 的中点.若AB AM AN ,则 _. 解析 如图,连接 MN 并延长交 AB 的延长线于 T. 由已知易得 AB4 5AT, 4 5AT ABAM A

    15、N , AT 5 4AM 5 4AN , T,M,N 三点共线,5 4 5 41, 4 5. 答案 4 5 结论 6 三角形“四心”向量形式的充要条件 设 O 为ABC 所在平面上一点,内角 A,B,C 所对的边分别为 a,b,c,则 (1)O 为ABC 的外心|OA |OB |OC | a 2sin A. (2)O 为ABC 的重心OA OB OC 0. (3)O 为ABC 的垂心OA OB OB OC OC OA . (4)O 为ABC 的内心aOA bOB cOC 0. 【例 6】 P 是ABC 所在平面内一点,若PA PBPB PCPC PA,则 P 是ABC 的( ) A.外心 B.

    16、内心 C.重心 D.垂心 解析 由PA PBPB PC,可得PB (PAPC)0,即PB CA0,PBCA,同理 可证PC AB,PABC.P 是ABC 的垂心. 答案 D 【训练 6】 O 是平面上一定点,A,B,C 是平面上不共线的三个点,动点 P 满 足OP OB OC 2 AP ,R,则 P 点的轨迹一定经过ABC 的( ) A.外心 B.内心 C.重心 D.垂心 解析 设 BC 的中点为 M,则OB OC 2 OM , 则有OP OM AP ,即MP AP . P 的轨迹一定通过ABC 的重心. 答案 C 结论 7 与等差数列相关的结论 已知等差数列an,公差为 d,前 n 项和为

    17、Sn. (1)若 Sm,S2m,S3m分别为等差数列an的前 m 项、前 2m 项、前 3m 项的和,则 Sm,S2mSm,S3mS2m成等差数列. (2)若等差数列an的项数为偶数 2m,公差为 d,所有奇数项之和为 S奇,所有偶 数项之和为 S偶,则所有项之和 S2mm(amam1),S偶S奇md,S 偶 S奇 am1 am . (3)若等差数列an的项数为奇数 2m1, 所有奇数项之和为 S奇, 所有偶数项之和 为 S偶,则所有项之和 S2m1(2m1)am,S奇S偶am,S 奇 S偶 m m1. 【例 7】 (1)设等差数列an的前 n 项和为 Sn,若 Sm12,Sm0,Sm13,

    18、则 m( ) A.3 B.4 C.5 D.6 (2)等差数列an的前 n 项和为 Sn,已知 am1am1a2m0,S2m138,则 m _. 解析 (1)数列an为等差数列,且前 n 项和为 Sn, 数列 Sn n 也为等差数列. Sm1 m1 Sm1 m1 2Sm m ,即 2 m1 3 m10,解得 m5. 经检验,m5 符合题意. (2)由 am1am1a2m0 得 2ama2m0,解得 am0 或 2. 又 S2m1(2m1)(a 1a2m1) 2 (2m1)am38, 显然可得 am0,所以 am2. 代入上式可得 2m119,解得 m10. 答案 (1)C (2)10 【训练7】

    19、 (1)等差数列an的前n项和为Sn, 若S1020, S2050, 则S30_. (2)一个等差数列的前 12 项和为 354,前 12 项中偶数项的和与奇数项的和的比为 3227,则数列的公差 d_. 解析 (1)(S20S10)S10(S30S20)(S20S10),S303S203S10350320 90. (2)设等差数列的前 12 项中奇数项和为 S奇,偶数项的和为 S偶,等差数列的公差 为 d. 由已知条件,得 S 奇S偶354, S偶S奇3227,解得 S 偶192, S奇162. 又 S偶S奇6d,所以 d192162 6 5. 答案 (1)90 (2)5 结论 8 与等比数

    20、列相关的结论 已知等比数列an,公比为 q,前 n 项和为 Sn. (1)数列 1 an 也为等比数列,其公比为1 q. (2)公比 q1 或 q1 且 n 为奇数时,Sn,S2nSn,S3nS2n,成等比数列 (nN*). (3)若等比数列的项数为 2n(nN*),公比为 q,奇数项之和为 S奇,偶数项之和为 S偶,则 S偶qS奇. (4)已知等比数列an,公比为 q,前 n 项和为 Sn.则 SmnSmqmSn(m,nN*). 【例 8】 (1)设等比数列an的前 n 项和为 Sn,若S6 S33,则 S9 S6( ) A.2 B.7 3 C. 8 3 D.3 解析 由已知S6 S33,得

    21、 S63S3 且 q1,因为 S3,S6S3,S9S6也为等比数 列, 所以(S6S3)2S3(S9S6), 则(2S3)2S3(S93S3).化简得 S97S3, 从而S9 S6 7S3 3S3 7 3. 答案 B (2)已知等比数列an的前 n 项和为 Sn,且满足 S37 2,S6 63 2 . 求数列an的通项公式; 求 log2a1log2a2log2a3log2a25的值. 解 由 S37 2, S6 63 2 , 得 S6S3q3S3(1q3)S3, q2.又 S3a1(1qq2), 得 a11 2. 故通项公式 an1 22 n12n2. 由及题意可得 log2ann2, 所

    22、以 log2a1 log2a2 log2a3 log2a25 1 0 1 2 23 25(123) 2 275. 【训练 8】 已知an是首项为 1 的等比数列,Sn是an的前 n 项和,且 9S3S6, 则数列 1 an 的前 5 项和为( ) A.15 8 或 5 B.31 16或 5 C.31 16 D.15 8 解析 设等比数列an的公比为 q,易知 S30. 则 S6S3S3q39S3,所以 q38,q2. 所以数列 1 an 是首项为 1,公比为1 2的等比数列,其前 5 项和为 1 1 2 5 11 2 31 16. 答案 C 结论 9 多面体的外接球和内切球 (1)长方体的体对

    23、角线长 d 与共点的三条棱长 a,b,c 之间的关系为 d2a2b2 c2;若长方体外接球的半径为 R,则有(2R)2a2b2c2. (2)棱长为 a 的正四面体内切球半径 r 6 12a,外接球半径 R 6 4 a. 【例 9】 已知一个平放的各棱长为 4 的三棱锥内有一个小球 O(重量忽略不计), 现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积 的7 8时,小球与该三棱锥的各侧面均相切(与水面也相切),则小球的表面积等于 ( ) A.7 6 B.4 3 C.2 3 D. 2 解析 当注入水的体积是该三棱锥体积的7 8时,设水面上方的小三棱锥的棱长为 x(各棱长都相等

    24、). 依题意, x 4 3 1 8,得 x2,易得小三棱锥的高为 2 6 3 . 设小球半径为 r,则1 3S 底面 2 6 3 41 3S 底面 r(S底面为小三棱锥的底面积),得 r 6 6 . 故小球的表面积 S4r22 3 . 答案 C 【训练 9】 (1)已知直三棱柱的底面是等腰直角三角形,直角边长是 1,且其外接 球的表面积是 16,则该三棱柱的侧棱长为( ) A. 14 B.2 3 C.4 6 D.3 (2)已知球 O 的直径 PA2r,B,C 是该球面上的两点,且 BCPBPCr,三 棱锥 PABC 的体积为32 2 3 ,则球 O 的表面积为( ) A.64 B.32 C.1

    25、6 D.8 解析 (1)由于直三棱柱 ABCA1B1C1的底面 ABC 为等腰直角三角形.把直三棱柱 ABCA1B1C1补成正四棱柱,则正四棱柱的体对角线是其外接球的直径,因为外 接球的表面积是 16,所以外接球半径为 2,因为直三棱柱的底面是等腰直角三 角形,斜边长 2,所以该三棱柱的侧棱长为 162 14. (2)如图,取 PA 的中点 O,则 O 为球心,连接 OB,OC,则几何体 OBCP 是棱 长为 r 的正四面体,所以 VOBCP 2 12r 3,于是 VP ABC2VOBCP 2 6 r3,令 2 6 r3 32 2 3 ,得 r4.从而 S球44264. 答案 (1)A (2)

    26、A 结论 10 焦点三角形的面积公式 (1)在椭圆x 2 a2 y2 b21(ab0)中,F1,F2 分别为左、右焦点,P 为椭圆上一点,则 PF1F2的面积 SPF1F2b2 tan 2,其中 F1PF2. (2)在双曲线x 2 a2 y2 b21(a0,b0)中,F1,F2 分别为左、右焦点,P 为双曲线上一 点,则PF1F2的面积 SPF1F2 b2 tan 2 ,其中 F1PF2. 【例 10】 如图,F1,F2是椭圆 C1:x 2 4y 21 与双曲线 C2 的公共焦点,A,B 分 别是 C1,C2在第二、四象限的公共点.若四边形 AF1BF2为矩形,则 C2的离心率 是( ) A.

    27、 2 B. 3 C.3 2 D. 6 2 解析 设双曲线 C2的方程为x 2 a22 y2 b221,则有 a 2 2b22c22c21413. 又四边形 AF1BF2为矩形,所以AF1F2的面积为 b21tan 45 b22 tan 45 ,即 b22b21 1. 所以 a22c22b22312. 故双曲线的离心率 ec2 a2 3 2 6 2 . 答案 D 【训练 10】 已知 F1,F2是椭圆 C:x 2 a2 y2 b21(ab0)的两个焦点,P 为椭圆 C 上一点,且PF1 PF2 .若PF1F2的面积为 9,则 b_. 解析 在焦点三角形 PF1F2中,PF1 PF2 , 所以F1

    28、PF290 , 故 SPF1F2b2tanF 1PF2 2 b2tan 45 9,则 b3. 答案 3 结论 11 圆锥曲线的切线问题 (1)过圆 C:(xa)2(yb)2R2上一点 P(x0,y0)的切线方程为(x0a)(xa)(y0 b)(yb)R2. (2)过椭圆x 2 a2 y2 b21 上一点 P(x0,y0)的切线方程为 x0 x a2 y0y b2 1. (3)已知点 M(x0,y0),抛物线 C:y22px(p0)和直线 l:y0yp(xx0). 当点 M 在抛物线 C 上时,直线 l 与抛物线 C 相切,其中 M 为切点,l 为切线. 当点 M 在抛物线 C 外时,直线 l

    29、与抛物线 C 相交,其中两交点与点 M 的连线 分别是抛物线的切线,即直线 l 为切点弦所在的直线. 【例 11】 已知抛物线 C:x24y,直线 l:xy20,设 P 为直线 l 上的点, 过点 P 作抛物线 C 的两条切线 PA,PB,其中 A,B 为切点,当点 P(x0,y0)为直 线 l 上的定点时,求直线 AB 的方程. 解 联立方程得 x 24y, xy20,消去 y,整理得 x 24x80,(4)248 160)焦点的弦 设 AB 是过抛物线 y22px(p0)焦点 F 的弦,若 A(xA,yA),B(xB,yB),则 (1)xA xBp 2 4 . (2)yA yBp2. (3

    30、)|AB|xAxBp 2p sin2( 是直线 AB 的倾斜角). 【例 12】 过抛物线 y24x 的焦点 F 的直线 l 与抛物线交于 A,B 两点,若|AF| 2|BF|,则|AB|等于( ) A.4 B.9 2 C.5 D.6 解析 由对称性不妨设点 A 在 x 轴的上方,如图设 A,B 在准线上的射影分别为 D,C,作 BEAD 于 E, 设|BF|m,直线 l 的倾斜角为 , 则|AB|3m, 由抛物线的定义知 |AD|AF|2m,|BC|BF|m, 所以 cos |AE| |AB| 1 3, sin28 9. 又 y24x,知 2p4,故利用弦长公式|AB| 2p sin2 9

    31、2. 答案 B 【训练 12】 设 F 为抛物线 C:y23x 的焦点,过 F 且倾斜角为 30 的直线交 C 于 A,B 两点,O 为坐标原点,则OAB 的面积为( ) A.3 3 4 B.9 3 8 C.63 32 D.9 4 解析 法一 由已知得焦点坐标为 F 3 4,0 , 因此直线 AB 的方程为 y 3 3 x3 4 , 即 4x4 3y30. 与抛物线方程联立,化简得 4y212 3y90, 故|yAyB|(yAyB)24yAyB6. 因此 SOAB1 2|OF|yAyB| 1 2 3 46 9 4. 法二 由 2p3,及|AB| 2p sin2 得|AB| 2p sin2 3 sin230 12. 原点到直线 AB 的距离 d|OF| sin 30 3 8, 故 SAOB1 2|AB| d 1 212 3 8 9 4. 答案 D

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高考数学 12类二级结论高效解题.doc
    链接地址:https://www.163wenku.com/p-926415.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库