江苏省连云港市2021届高三第一学期期中调研适应性考试数学试题.pdf
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《江苏省连云港市2021届高三第一学期期中调研适应性考试数学试题.pdf》由用户(青草浅笑)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 连云港市 2021 届高三 第一 学期 期中 调研 适应性 考试 数学试题 下载 _考试试卷_数学_高中
- 资源描述:
-
1、高三数学试题 第1页 共4页 连云港市2021届高三第一学期期中调研适应性考试 数 学 本试卷共4页,22题。全卷满分150分,考试用时120分钟。 注意事项: 1.答题前,考生务必将自己的姓名、班级、考场号、座位号填入相应位置内。 2.客观题请用2B铅笔填涂在答题卡上,主观题用黑色的签字笔书写在答题卡上。 3.考试结束时,只交答题卡,试卷请妥善保管。 一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项 是符合题目要求的。 1. 已知集合(2)0Ax x x,集合 |1Bx x , 则AB ( ) A. (, 2) B. (,1) C. (0,1) D. (0,
2、2) 2. “0a0”成立的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 3. 曲线y xln x在点M(e,e)处的切线方程为 ( ) A.y = 2x+e B.y =2x e C.y = x+e D.y =x e 4. 激光多普勒测速仪(Laser Doppler Velocimetry, LDV)的工 作原理是:激光器发出的光平均分成两束射出,在被测 物体表面汇聚后反射,探测器接收反射光,当被测物体 横向速度为零时,反射光与探测光频率相同; 当横向速 度不为零时,反射光相对探测光发生频移, 频移 fp 2vsin (1/h),其中v为被
3、测物体的横向速度, 为两束探 测光线夹角的一半, 为激光波长如图, 用激光多普 勒测速仪实地测量复兴号高铁在某时刻的速度,激光测 速仪安装在距离高铁 1m 处,发出的激光波长为 1560nm (1nm109m),测得这时刻的频移为 8.72 109(1/h),则该时刻高铁的速度约为 ( ) A320km/h B330km/h C340km/h D350km/h 5. 已知 0.3e 5 1 e,( ) ,log7,sin4 2 abcd,则 ( ) A.a b cd B.a c b d C. d bac D.badc 6. 函数 f (x ) = (3x x3)sin x 的部分图象大致为 (
4、 ) 高三数学试题 第2页 共4页 7. 已知菱形ABCD中,ABC=120 , 1 2 3,0, 2 ACBMCBDCDN,若 29AM AN,则 ( ) A. 1 8 B. 1 7 C. 1 6 D. 1 5 8. 已知函数f (x) =xlnx x + 2a+2,若函数y=f(x)与y=f(f(x)有相同的值域, 则实数a的取值 范围是 ( ) A. (,0 B. 0,+) C. 0,3 2) D. ( 1 2,0 二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题 目要求,全部选对得5分,有选错的得0分,部分选对的得3分。 9. 已知 a0,b0,且 a
5、2+b2=2,则下列不等式中一定成立的是 ( ) A. ab1 B. 11 2 ab C. lga+lgb1 D. a+b 2 10. 已知ABC 是边长为 2 的等边三角形,D 是 AC的点2ADDC,E 是 AB 的中点, BD 与 CE 交于点 O,那么 ( ) AOEOC0 B1AB CE C 3 | 2 OAOBOC D 13 | 2 DE 11. 历史上第一个给出函数一般定义的是19世纪德国数学家狄利克雷(Dirichlet), 当时数学 家们处理的大部分数学对象都没有完全的严格的定义,数学家们习惯借助于直觉和想 象 来描述数学对象,狄利克雷在1829年给出了著名函数 : 1, (
展开阅读全文