立体几何中的向量方法教案(教学设计)(第九届全国高中青年数学教师优秀课展示与培训活动).pdf
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《立体几何中的向量方法教案(教学设计)(第九届全国高中青年数学教师优秀课展示与培训活动).pdf》由用户(四川三人行教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第九届全国高中青年数学教师优秀课展示与培训活动 立体几何中的向量方法 教案教学设计 【第九届全国高中青年数学教师优秀课展示与培训活动】 立体几何 中的 向量 方法 教案 教学 设计 第九 全国 高中 下载 _其他_数学_高中
- 资源描述:
-
1、课题 3.2 立体几何中的向量方法求二面角 授课教师:大兴安岭实验中学 刁明翀 教材:教材:人民教育出版社高中数学选修 21 一、教学内容解析 本节课是人民教育出版社高中数学选修 21 第三章第二节立体几何中的向 量方法的第三课时内容属于新授课性质原理课。 本单元的学习可以帮助学生在学习平面向量的基础上,利用类比的方法理解 空间向量的概念,运算基本定理和应用,体会向量方法和综合几何方法的共性和 差异,运用向量方法解决简单的数学问题和实际问题,感悟向量是研究几何问题 的有效工具。 二、学生学情分析 求二面角是高中数学立体几何学习的一个重点也是难点,学生在必修二学习 过程中,主要采取“形到形”的综
2、合推理方法,这种方法没有一般规律可循,对 人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 学生在必修 4 中已经学习了平面向量的基本概念与基本运算,对向量的坐标 化运算有了一定程度的了解,已经初步具备利用向量工具解题的意识和能力。 选修 2-1 中向量知识的引入,为学生解决立体几何问题提供了一个有效的工 具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向 量,对于求二面角问题提供通法,避免了传统立体几何中的技巧性问题,因此降 低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 三、教学目标设置 会求平面的法向量,并利用平面的法向量法求二面角,感
3、悟向量是研究立 体几何问题的有效工具。 培养学生利用图形,描述、分析数学问题的能力。体现了数形结合的思想。 进一步发展学生的数学运算能力,促进学生数学思维发展,形成规范化思考问 题的品质,养成一丝不苟、严谨求实的科学精神。 四、教学重点与难点 教学重点:应用法向量法求二面角 教学难点:理解法向量与二面角的关系。 五、 教学策略分析 新课程倡导学生自主学习,要求教师成为学生学习的引导者、组织者、合作 者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程 本节课的教学采用的教学方法为:启发引导教学法和问题教学法 六、教学过程设计 1.1. 创设情境,复习引入课题创设情境,复习引入课题 师:
4、经过前一阶段立体几何的学习,同学们已经知道,在立体几何中有三个 重要的角,他们分别是:异面直线所成角,直线与平面所成的角和二面角。这三 个角的求法是高考中立体几何版块的重点考查内容,占有非常重要的地位,在 2016-2018 连续三年的高考全国新课标卷中都考了求空间角的内容。 (教师幻灯片 展示 2016-2018 高考全国新课标卷立体几何试题) 在前两节课中我们已经共同学习了向量法求异面直线所成角和线面角的方法, 这节课我们继续探讨向量法在求二面角中的应用。 教师板书课题:立体几何中的向量方法(第三课时) 【设计意图设计意图】通过高考真题的展示,让同学们意识到求二面角这一知识点的重要 性,从
5、而让学生自主的产生学习兴趣,理解学习的必要性。 师:什么是二面角?它是怎样定义的?取值范围又是什么呢? 生 : 从一条直线出发的两个半平面所组成的图形叫做二面角。范围是 0, 师:那么在几何法中我们怎样求二面角呢? 生:在二面角的棱 l 上任取一点 O,以点 O 为垂足,在半平面和内分别 作垂直于棱 l 的射线 OA 和 OB 则射线 OA 和 OB 构成 的AOB 叫做二面角的平 面角,二面角的大小可以用它的平面角来度量。 【阶段小结】 我们知道这种几何法没有一般规律可循,在两个半平面引棱上的垂 线,并交于一点在实际操作时难度较大,技巧性较强,致使大多数同学都感到束 手无策,为此我们引入“向
6、量”这一有效的工具,它能利用代数方法解决立体几 何问题,对于求二面角问题提供通法, ,体现了数形结合的思想。降低了学生学习 的难度,减轻了学习的负担。那么,怎样将向量和二面角产生联系呢? 生:利用平面的法向量。 师:什么是法向量? 生:与平面垂直的向量。 师:好,下面请同学们看大屏幕, (教师展示幻灯片)同时请同学们思考,每 幅图片中所展示的二面角和法向量成角之间有什么联系呢? 2 2、知识讲解与典例分析、知识讲解与典例分析 (1) 师:有没有同学可以总结初图中所示的法向量成角与二面角之间的关系呢? 生:二面角与法向量成角相等, (2) 生:二面角与法向量成角互补, 师:同学们观察的很认真,总
7、结的非常好,也就是说当两个法向量的方向一 进一出时二面角等于法向量夹角;同进同出时二面角等于法向量夹角的补角。 即有:二面角与法向量成角余弦值的绝对值相等:|cos|=|cos| 【设计意图设计意图】通过 PPT 幻灯片的展示,向学生分类展示了法向量与平面的位置关 系,让学生通过观察不同的法向量方向下,法向量成角与二面角之间的联系,并 | ,coscos 21 21 21 nn nn nn | ,coscos 21 21 21 nn nn nn 21,n n 21,n n 得到它们的关系式,突破难点。 3.3. 例题解析例题解析 例例1.1. 正方体ABEF-DCEF中, M,N分别为AC,B
展开阅读全文