2021年新课标(老高考)文数复习练习课件:10.1 椭圆及其性质.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年新课标(老高考)文数复习练习课件:10.1 椭圆及其性质.pptx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 新课 高考 复习 练习 课件 10.1 椭圆 及其 性质 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、考点考点1 1 椭圆的定义和标准方程椭圆的定义和标准方程 1.(2019课标,12,5分)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2| F2B|,|AB|=|BF1|,则C的方程为( ) A.+y2=1 B.+=1 C.+=1 D.+=1 2 2 x 2 3 x 2 2 y 2 4 x 2 3 y 2 5 x 2 4 y 答案答案 B 本题考查了椭圆的定义、椭圆的方程和余弦定理的应用,考查学生的运算求解能力,考 查了方程的思想方法,体现的核心素养是数学运算. 设|F2B|=x(x0),则|AF2|=2x,|AB|=3x, |BF1|=3
2、x,|AF1|=4a-(|AB|+|BF1|)=4a-6x, 由椭圆的定义知|BF1|+|BF2|=2a=4x, 所以|AF1|=2x. 在BF1F2中,由余弦定理得|BF1|2=|BF2|2+|F1F2|2-2|F2B| |F1F2|cosBF2F1,即9x2=x2+22-4x cosBF2F1, 在AF1F2中,由余弦定理可得|AF1|2=|AF2|2+|F1F2|2-2|AF2| |F1F2|cosAF2F1,即4x2=4x2+22+8x cosBF2 F1, 由得x=,所以2a=4x=2,a=,所以b2=a2-c2=2. 所以椭圆的方程为+=1.故选B. 3 2 33 2 3 x 2
3、2 y 思路分析思路分析 由于涉及焦点,所以要利用椭圆的定义,通过解三角形建立方程求a的值,而b2=a2-1,故可 得椭圆的方程. 2.(2019课标,15,5分)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若MF1 F2为等腰三角形,则M的坐标为 . 2 36 x 2 20 y 答案答案 (3,) 15 解析解析 本题考查了椭圆的定义与几何性质;考查了学生的运算求解能力和数形结合的思想方法; 考查了数学运算的核心素养. 不妨设F1,F2分别是椭圆C的左,右焦点,由M点在第一象限,MF1F2是等腰三角形,知|F1M|=|F1F2|,又 由椭圆方程+=1,知|F1F2|=8
4、,|F1M|+|F2M|=26=12, 所以|F1M|=|F1F2|=8,所以|F2M|=4. 设M(x0,y0)(x00,y00), 则解得x0=3,y0=,即M(3,). 2 36 x 2 20 y 22 00 22 00 (4)64, (-4)16, xy xy 1515 一题多解一题多解 依题意得|F1F2|=|F1M|=8,|F2M|=4,cosMF1F2=, 则tanMF1F2=. 所以直线MF1的方程为y-0=(x+4). 设M(6cos ,2sin ), 因为M点在直线MF1上, 所以2sin =(6cos +4), 结合sin2+cos2=1且sin 0,cos 0得cos
5、=,sin =,即M点的坐标为(3,). 222 88 -4 2 8 8 7 8 15 7 15 7 5 5 15 7 1 2 3 2 15 温馨提示温馨提示 在处理椭圆上的点到焦点的距离时可采用以下公式直接处理 :已知F1、F2分别为椭圆C的左、右焦点,点P(x0,y0)在椭圆上,则有|PF1|=a+ ex0,|PF2|=a-ex0(焦半径公式). 22 22 :1 xy C ab 以椭圆为例 3.(2019浙江,15,4分)已知椭圆+=1的左焦点为F,点P在椭圆上且在x轴的上方.若线段PF的中 点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是 . 2 9 x 2 5 y 答案答
6、案 15 解析解析 如图,记椭圆的右焦点为F,取PF中点为M, 由题知a=3,b=,c=2,连接OM,PF, 则|OM|=|OF|=2,又M为PF的中点, |PF|=2|OM|,PFOM,|PF|=4, 又P在椭圆上,|PF|+|PF|=6,|PF|=2, 在PFF中,|PF|=|FF|=4,|PF|=2,连接FM, 则FMPF,|FM|=, kPF=tanPFF=. 即直线PF的斜率为. 5 22 | -|FFFM16-115 | | | FM FM 15 15 一题多解一题多解 易知F(-2,0),设P(3cos ,sin ),设PF的中点为M,则M,|OM|=|OF|= 2, +=4,9
7、cos2-12cos +4+5sin2=16,又sin2=1-cos2,4cos2-12cos -7=0, 解得cos =-,sin2=,又P在x轴上方,sin =, P,kPF=,故答案为. 5 3cos -25sin , 22 2 3cos -2 2 2 5sin 2 1 2 3 4 3 2 315 -, 22 1515 4.(2018浙江,17,4分)已知点P(0,1),椭圆+y2=m(m1)上两点A,B满足=2,则当m= 时, 点B横坐标的绝对值最大. 2 4 x APPB 答案答案 5 解析解析 本题考查椭圆的标准方程,向量的坐标运算,二次函数的最值. 设B(t,u),由=2,易得A
8、(-2t,3-2u). 点A,B都在椭圆上, 从而有+3u2-12u+9=0,即+u2=4u-3. 即有4u-3=mu=,+=m, t2=-m2+m-=-(m-5)2+4. 当m=5时,(t2)max=4,即|t|max=2, 即当m=5时,点B横坐标的绝对值最大. APPB 2 2 2 2 , 4 4 (3-2 ), 4 t um t um 2 3 4 t 2 4 t 3 4 m 2 4 t 2 (3) 16 m 1 4 5 2 9 4 1 4 思路分析思路分析 (1)设出点B的坐标,利用向量的坐标运算得点A的坐标. (2)利用点A,B都在椭圆上得方程组,求得点B的横、纵坐标满足的关系式.
9、(3)利用(2)中的关系式及点B在椭圆上,把点B的横坐标的平方表示为关于m的二次函数. (4)利用二次函数的最值得结论. 5.(2020课标,21,12分)已知椭圆C:+=1(0m0,由题意知yP0. 由已知可得B(5,0),直线BP的方程为y=-(x-5), 所以|BP|=yP,|BQ|=. 因为|BP|=|BQ|, 所以yP=1,将yP=1代入C的方程,解得xP=3或-3. 由直线BP的方程得yQ=2或8. 所以点P,Q的坐标分别为P1(3,1),Q1(6,2);P2(-3,1),Q2(6,8). |P1Q1|=,直线P1Q1的方程为y=x,点A(-5,0)到直线P1Q1的距离为,故AP1
10、Q1的面积为 =. |P2Q2|=,直线P2Q2的方程为y=x+,点A到直线P2Q2的距离为,故AP2Q2的面积为 =. 综上,APQ的面积为. 2 25- 5 m15 4 25 16 2 25 x 2 25 16 y 1 Q y 2 1 Q y 2 1 Q y 10 1 3 10 2 1 2 10 2 10 5 2 130 7 9 10 3 130 26 1 2 130 26 130 5 2 5 2 6.(2019江苏,17,14分)如图,在平面直角坐标系xOy中,椭圆C:+=1(ab0)的焦点为F1(-1,0),F2 (1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:(x-1)2
11、+y2=4a2交于点A,与椭圆C交于点D.连接AF1并延 长交圆F2于点B,连接BF2交椭圆C于点E,连接DF1.已知DF1=. (1)求椭圆C的标准方程; (2)求点E的坐标. 2 2 x a 2 2 y b 5 2 解析解析 (1)设椭圆C的焦距为2c. 因为F1(-1,0),F2(1,0),所以F1F2=2,c=1. 又因为DF1=,AF2x轴,所以DF2=. 因此2a=DF1+DF2=4,从而a=2. 由b2=a2-c2,得b2=3. 因此,椭圆C的标准方程为+=1. (2)解法一:由(1)知,椭圆C:+=1,a=2. 因为AF2x轴,所以点A的横坐标为1. 将x=1代入圆F2的方程(
12、x-1)2+y2=16,解得y=4. 因为点A在x轴上方,所以A(1,4). 又F1(-1,0),所以直线AF1:y=2x+2. 由得5x2+6x-11=0,解得x=1或x=-. 将x=-代入y=2x+2,得y=-.因此B. 5 2 22 112 -DFFF 2 2 5 -2 2 3 2 2 4 x 2 3 y 2 4 x 2 3 y 22 22, ( -1)16, yx xy 11 5 11 5 12 5 11 12 -,- 55 又F2(1,0),所以直线BF2:y=(x-1). 由得7x2-6x-13=0,解得x=-1或x=. 又因为E是线段BF2与椭圆的交点,所以x=-1. 将x=-1
13、代入y=(x-1),得y=-. 因此E. 解法二:由(1)知,椭圆C:+=1. 如图,连接EF1. 3 4 22 3 ( -1), 4 1, 43 yx xy 13 7 3 4 3 2 3 -1,- 2 2 4 x 2 3 y 因为BF2=2a,EF1+EF2=2a,所以EF1=EB, 从而BF1E=B. 因为F2A=F2B,所以A=B. 所以A=BF1E,从而EF1F2A. 因为AF2x轴,所以EF1x轴. 因为F1(-1,0),由解得y=. 又因为E是线段BF2与椭圆的交点,所以y=-. 因此E. 22 -1, 1, 43 x xy 3 2 3 2 3 -1,- 2 7.(2017天津,2
14、0,14分)已知椭圆+=1(ab0)的左焦点为F(-c,0),右顶点为A,点E的坐标为(0,c), EFA的面积为. (1)求椭圆的离心率; (2)设点Q在线段AE上,|FQ|=c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PMQN,且直线PM与 直线QN间的距离为c,四边形PQNM的面积为3c. (i)求直线FP的斜率; (ii)求椭圆的方程. 2 2 x a 2 2 y b 2 2 b 3 2 解析解析 (1)设椭圆的离心率为e.由已知,可得(c+a)c=. 又由b2=a2-c2,可得2c2+ac-a2=0,即2e2+e-1=0. 又因为0e0),则直线FP的斜率为. 由(1)知a=2
15、c,可得直线AE的方程为+=1,即x+2y-2c=0,与直线FP的方程联立,可解得x=, y=,即点Q的坐标为.由已知|FQ|=c,有+=,整理得3 m2-4m=0,所以m=,即直线FP的斜率为. (ii)由a=2c,可得b=c,故椭圆方程可以表示为+=1. 由(i)得直线FP的方程为3x-4y+3c=0,与椭圆方程联立得消去y,整理得7x2+6cx-13c2=0, 解得x=-(舍去)或x=c.因此可得点P,进而可得|FP|=,所以|PQ|=|FP|-|FQ |=-=c. 1 2 2 2 b 1 2 1 2 1 m 2 x c y c (2 -2) 2 mc m 3 2 c m (2 -2)3
16、 , 22 mcc mm 3 2 2 (2 -2) 2 mc c m 2 3 2 c m 2 3 2 c 4 3 3 4 3 2 2 4 x c 2 2 3 y c 22 22 3 -430, 1, 43 xyc xy cc 13 7 c3 , 2 c c 2 2 3 () 2 c cc 5 2 c 5 2 c3 2 c 由已知,知线段PQ的长即为PM与QN这两条平行直线间的距离,故直线PM和QN都垂直于直线FP. 因为QNFP,所以|QN|=|FQ| tanQFN=,所以FQN的面积为|FQ|QN|=,同理 FPM的面积等于,由四边形PQNM的面积为3c,得-=3c,整理得c2=2c,又由c
17、0,得c=2. 所以椭圆的方程为+=1. 3 2 c3 4 9 8 c1 2 2 27 32 c 2 75 32 c 2 75 32 c 2 27 32 c 2 16 x 2 12 y 方法总结方法总结 1.求椭圆离心率常用的方法:(1)直接求a,c,利用定义求解;(2)构造关于a,b,c的齐次等式, 结合b2=a2-c2消去b,化为关于a,c的齐次方程,从而利用方程思想求出离心率e的值. 2.求直线斜率的常用方法:(1)公式法:k=(x1x2),其中两点坐标分别为(x1,y1),(x2,y2);(2)利用导数 的几何意义求解;(3)直线的方向向量a=(m,n),则k=(m0);(4)点差法.
18、 12 12 - - y y x x n m 3.解决四边形或三角形的面积问题时,注意弦长公式与整体代换思想的应用. 8.(2018天津,19,14分)设椭圆+=1(ab0)的右顶点为A,上顶点为B.已知椭圆的离心率为,| AB|=. (1)求椭圆的方程; (2)设直线l:y=kx(kx10,点Q的坐标为(-x1,-y1).由BPM的面积 是BPQ面积的2倍,可得|PM|=2|PQ|,从而x2-x1=2x1-(-x1),即x2=5x1. 易知直线AB的方程为2x+3y=6,由方程组消去y,可得x2=.由方程组消去 y,可得x1=. 由x2=5x1,可得=5(3k+2),两边平方,整理得18k2
19、+25k+8=0,解得k=-或k=-. 当k=-时,x2=-9b0)的左、右焦点为F1、F2,离心率为,过F2的 直线l交C于A、B两点.若AF1B的周长为4,则C的方程为( ) A.+=1 B.+y2=1 C.+=1 D.+=1 2 2 x a 2 2 y b 3 3 3 2 3 x 2 2 y 2 3 x 2 12 x 2 8 y 2 12 x 2 4 y 以下为教师用书专用 答案答案 A 由椭圆的定义可知AF1B的周长为4a, 所以4a=4,故a=, 又由e=得c=1, 所以b2=a2-c2=2, 则C的方程为+=1,故选A. 33 c a 3 3 2 3 x 2 2 y 2.(2017
20、江苏,17,14分)如图,在平面直角坐标系xOy中,椭圆E:+=1(ab0)的左、右焦点分别为 F1、F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂 线l1,过点F2作直线PF2的垂线l2. (1)求椭圆E的标准方程; (2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标. 2 2 x a 2 2 y b 1 2 解析解析 本题主要考查直线方程、直线与直线的位置关系、椭圆方程、椭圆的几何性质等基础知 识,考查分析问题能力和运算求解能力. (1)设椭圆的半焦距为c. 因为椭圆E的离心率为,两准线之间的距离为8,所以=,=8,解得a=2,c=1,于
21、是b=, 因此椭圆E的标准方程是+=1. (2)由(1)知,F1(-1,0),F2(1,0). 设P(x0,y0),因为P为第一象限的点,故x00,y00. 当x0=1时,l2与l1相交于F1,与题设不符. 当x01时,直线PF1的斜率为,直线PF2的斜率为. 因为l1PF1,l2PF2,所以直线l1的斜率为-,直线l2的斜率为-, 从而直线l1的方程:y=-(x+1), 直线l2的方程:y=-(x-1). 由,解得x=-x0,y=,所以Q. 1 2 c a 1 2 2 2a c 22 -a c3 2 4 x 2 3 y 0 0 1 y x 0 0-1 y x 0 0 1x y 0 0 -1x
22、 y 0 0 1x y 0 0 -1x y 2 0 0 -1x y 2 0 0 0 -1 -, x x y 因为点Q在椭圆上,由对称性,得=y0,即-=1或+=1. 又P在椭圆E上,故+=1. 由解得x0=,y0=;无解. 因此点P的坐标为. 2 0 0 -1x y 2 0 x 2 0 y 2 0 x 2 0 y 2 0 4 x 2 0 3 y 22 00 22 00 -1, 1, 43 x y xy 4 7 7 3 7 7 22 00 22 00 1, 1, 43 xy xy 4 7 3 7 , 77 解后反思解后反思 本题中求出点Q坐标后,利用对称性得到x0,y0的另一表达式,大大简化了计
23、算,因为点Q 在椭圆上,由对称性,得=y0,即-=1或+=1. 但很多同学会想不到这一步,我们也可以通过下面的方法处理: 这样=,亦可知=y0,后面处理同原解法. 2 0 0 -1x y 2 0 x 2 0 y 2 0 x 2 0 y 2 2 0 2 0 0 22 00 -1 1, 43 1, 43 x yx xy 2 2 0 0 -1 3 x y 2 0 3 y 2 0 0 -1x y 3.(2017北京,19,14分)已知椭圆C的两个顶点分别为A(-2,0),B(2,0),焦点在x轴上,离心率为. (1)求椭圆C的方程; (2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,
展开阅读全文