2021年新课标(老高考)理数复习练习课件:§12.3 二项分布与正态分布.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年新课标(老高考)理数复习练习课件:§12.3 二项分布与正态分布.pptx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 新课 高考 复习 练习 课件 12.3 二项分布 正态分布 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、考点考点1 1 条件概率、相互独立事件及二项分布条件概率、相互独立事件及二项分布 1.(2018课标,8,5分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独 立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 答案答案 B 本题考查相互独立事件及二项分布. 由题知XB(10,p),则DX=10p(1-p)=2.4, 解得p=0.4或0.6. 又P(X=4)P(X=6), 即p4(1-p)6p6(1-p)4(1-p)20.5, p=0.6,故选B. 4 10 C 6 10 C
2、 2.(2020天津,13,5分)已知甲、乙两球落入盒子的概率分别为和.假定两球是否落入盒子互不影 响,则甲、乙两球都落入盒子的概率为 ;甲、乙两球至少有一个落入盒子的概率为 . 1 2 1 3 答案答案 ; 1 6 2 3 解析解析 设“甲、乙两球都落入盒子”为事件A, 则P(A)=. 设“甲、乙两球至少有一个落入盒子”为事件B, 则P(B)=1- =1-=. 1 2 1 3 1 6 1 1- 2 1 1- 3 1 3 2 3 3.(2017课标,13,5分)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取 100次,X表示抽到的二等品件数,则DX= . 答案答案 1.
3、96 解析解析 本题主要考查二项分布. 由题意可知XB(100,0.02),由二项分布可得DX=1000.02(1-0.02)=1.96. 4.(2019课标,15,5分)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获 胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜 的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以41获胜的概率是 . 答案答案 0.18 解析解析 本题主要考查独立事件概率的求解;考查学生的数据处理能力、推理论证能力;考查的核 心素养是逻辑推理与数学建模. 由题意可知七场四胜制且甲队以41
4、获胜,则共比赛了5场,且第5场甲胜,前4场中甲胜3场.第一类: 第1场、第2场中甲胜1场,第3场、第4场甲胜,则P1=0.60.40.52=2=;第二类:第1 场、第2场甲胜,第3场、第4场中甲胜1场,则P2=0.620.50.5=2=,所以甲队以41 获胜的概率为P=0.6=0.18. 1 2 C 3 5 2 5 1 4 3 25 1 2 C 2 3 5 1 4 9 50 39 2550 5.(2016课标,18,12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续 保人本年度的保费与其上年度出险次数的关联如下: 设该险种一续保人一年内出险次数与相应概率如下: (1
5、)求一续保人本年度的保费高于基本保费的概率; (2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值. 上年度出险次数 0 1 2 3 4 5 保 费 0.85a a 1.25a 1.5a 1.75a 2a 一年内出险次数 0 1 2 3 4 5 概 率 0.30 0.15 0.20 0.20 0.10 0.05 解析解析 (1)设A表示事件“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内 出险次数大于1,故P(A)=0.20+0.20+0.10+0.05=0.55.(3分) (2)设B表示事件“一续保人本
6、年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出 险次数大于3,故P(B)=0.10+0.05=0.15. 又P(AB)=P(B),故P(B|A)=. 因此所求概率为.(7分) (3)记续保人本年度的保费为X元,则X的分布列为 EX=0.85a0.30+a0.15+1.25a0.20+1.5a0.20+1.75a0.10+2a0.05=1.23a. 因此续保人本年度的平均保费与基本保费的比值为1.23.(12分) X 0.85a a 1.25a 1.5a 1.75a 2a P 0.30 0.15 0.20 0.20 0.10 0.05 () ( ) P AB P A ( ) (
7、) P B P A 0.15 0.55 3 11 3 11 易错警示易错警示 对条件概率的定义理解不到位,或者不会运用条件概率的求解公式,导致出错. 6.(2019课标,18,12分)11分制乒乓球比赛,每赢一球得1分,当某局打成1010平后,每球交换发球 权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概 率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方1010平后,甲先发球,两 人又打了X个球该局比赛结束. (1)求P(X=2); (2)求事件“X=4且甲获胜”的概率. 解析解析 本题主要考查独立事件概率的求解.考查学生的逻辑
8、推理及数据处理能力;考查的核心素 养是数据分析和逻辑推理. (1)X=2就是1010平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分. 因此P(X=2)=0.50.4+(1-0.5)(1-0.4)=0.5. (2)X=4且甲获胜,就是1010平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两 球是甲、乙各得1分,后两球均为甲得分.因此所求概率为0.5(1-0.4)+(1-0.5)0.40.50.4=0.1. 思路分析思路分析 (1)X=2,即要么甲得2分,要么乙得2分,分类求出独立事件的概率,求和即可. (2)X=4且甲获胜,即又打了4个球,且后两球甲得分
9、,前两个球甲、乙各得1分,由独立事件的概率公 式可求解. 7.(2019天津,16,13分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两 位同学到校情况互不影响,且任一同学每天到校情况相互独立. (1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望; (2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天 数恰好多2”,求事件M发生的概率. 2 3 解析解析 本题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算 公式等基础知识.考查运用概率知识解决简单实际问题的能
10、力,重点考查数学建模、数学运算的核 心素养. (1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,故XB ,从而P(X=k)= ,k=0,1,2,3. 所以,随机变量X的分布列为 随机变量X的数学期望E(X)=3=2. (2)设乙同学上学期间的三天中7:30之前到校的天数为Y,则YB,且M=X=3,Y=1X=2,Y= 0. 由题意知事件X=3,Y=1与X=2,Y=0互斥,且事件X=3与Y=1,事件X=2与Y=0均相互独 立, X 0 1 2 3 P 2 3 2 3, 3 3 Ck 2 3 k 3- 1 3 k 1 27 2 9 4 9 8 27 2 3 2 3,
11、 3 从而由(1)知P(M)=P(X=3,Y=1X=2,Y=0)=P(X=3,Y=1)+P(X=2,Y=0)=P(X=3)P(Y=1)+P(X=2)P (Y=0)=+=. 8 27 2 9 4 9 1 27 20 243 思路分析思路分析 (1)观察关键词“均”“互不影响”“相互独立”,判断XB(n,p),从而利用二项分布求 出分布列与期望.(2)先将“天数恰好多2”用数学语言表示,即或从而利用互斥与相 互独立事件的概率计算公式求解. 3, 1 X Y 2, 0. X Y 8.(2018课标,20,12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对 产品作检验,如检验
12、出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据 检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0p0; 当p(0.1,1)时, f (p)400,故应该对余下的产品作检验. 2 20 C 2 20 C 2 20 C 9.(2016课标,19,12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零 件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再 购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这 种机器在三年使用期内更换的易损零件数,
13、得下面柱状图: 以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台 机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数. (1)求X的分布列; (2)若要求P(Xn)0.5,确定n的最小值; (3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个? 解析解析 (1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的 概率分别为0.2,0.4,0.2,0.2.可知X的所有可能取值为16,17,18,19,20,21,22, P(X=16)=0.20.2=0.04;
14、 P(X=17)=20.20.4=0.16; P(X=18)=20.20.2+0.40.4=0.24; P(X=19)=20.20.2+20.40.2=0.24; P(X=20)=20.20.4+0.20.2=0.2; P(X=21)=20.20.2=0.08; P(X=22)=0.20.2=0.04.(4分) 所以X的分布列为 X 16 17 18 19 20 21 22 P 0.04 0.16 0.24 0.24 0.2 0.08 0.04 (6分) (2)由(1)知P(X18)=0.44,P(X19)=0.68,故n的最小值为19.(8分) (3)记Y表示2台机器在购买易损零件上所需的费
15、用(单位:元). 当n=19时, EY=192000.68+(19200+500)0.2+(19200+2500)0.08+(19200+3500)0.04=4 040.(10 分) 当n=20时, EY=202000.88+(20200+500)0.08+(20200+2500)0.04=4 080. 可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.(12分) 解后反思解后反思 本题重点考查相互独立事件的概率、简单随机变量的分布列及期望.求解本题的关键 在于认真分析题干中的事件,确定事件间的相互关系,根据分析内容,找到解题的突破口. 1.(2015课标,4,5
16、分)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投 中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A.0.648 B.0.432 C.0.36 D.0.312 以下为教师用书专用 答案答案 A 该同学通过测试的概率P=0.620.4+0.63=0.432+0.216=0.648,故选A. 2 3 C 2.(2014课标,5,5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两 天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A.0.8 B.0.75 C.0.6 D.0
17、.45 答案答案 A 由条件概率公式可得所求概率为=0.8,故选A. 0.6 0.75 思路分析思路分析 直接利用条件概率公式即可求解. 考点考点2 2 正态分布正态分布 (2017课标,19,12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机 抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线在正常状态下生 产的零件的尺寸服从正态分布N(,2). (1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(-3,+3)之外的零件数,求P (X1)及X的数学期望; (2)一天内抽检零件中,如果出现了尺寸在(-3,+3)之外的零件,就认
18、为这条生产线在这一天的 生产过程可能出现了异常情况,需对当天的生产过程进行检查. (i)试说明上述监控生产过程方法的合理性; (ii)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得=xi=9.97,s=0.212,其中xi为抽取的第i个零件的尺 寸,i=1,2,16. 用样本平均数作为的估计值,用样本标准差s作为的估计值,利用估计值判断是否需对当天 的生产过程进行检查.剔除(-3,+3)之外的数据,用剩下的数据估
19、计和(精确到0.01). 附:若随机变量Z服从正态分布N(,2),则P(-3Z+3)=0.997 4. 0.997 4160.959 2,0.09. x 1 16 16 1i 16 2 1 1 ( - ) 16 i i x x 16 2 2 1 1 -16 16 i i xx x 0.008 解析解析 (1)抽取的一个零件的尺寸在(-3,+3)之内的概率为0.997 4,从而零件的尺寸在(-3,+3 )之外的概率为0.002 6,故XB(16,0.002 6). 因此P(X1)=1-P(X=0)=1-0.997 4160.040 8. X的数学期望为EX=160.002 6=0.041 6.
20、(2)(i)如果生产状态正常,一个零件尺寸在(-3,+3)之外的概率只有0.002 6,一天内抽取的16个 零件中,出现尺寸在(-3,+3)之外的零件的概率只有0.040 8,发生的概率很小.因此一旦发生这 种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程 进行检查,可见上述监控生产过程的方法是合理的. (ii)由=9.97,s0.212,得的估计值为=9.97,的估计值为=0.212,由样本数据可以看出有一个 零件的尺寸在(-3,+3)之外,因此需对当天的生产过程进行检查. 剔除(-3,+3)之外的数据9.22,剩下数据的平均数为 (169.97-9.2
21、2)=10.02,因此的估计值为10.02. =160.2122+169.9721 591.134, 剔除(-3,+3)之外的数据9.22,剩下数据的样本方差为 (1 591.134-9.222-1510.022)0.008, x 1 15 16 1i 2 i x 1 15 因此的估计值为0.09. 0.008 (2014课标,18,12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由 测量结果得如下频率分布直方图: (1)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中的数据用该组区间的中点值 作代表); (2)由直方图可以认为,这种产品的质量指标值Z
22、服从正态分布N(,2),其中近似为样本平均数,2 x x 以下为教师用书专用 近似为样本方差s2. (i)利用该正态分布,求P(187.8Z212.2); (ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,21 2.2)的产品件数.利用(i)的结果,求EX. 附:12.2. 若ZN(,2),则P(-Z +)=0.682 6,P(-2Z +2)=0.954 4. 150 解析解析 (1)抽取产品的质量指标值的样本平均数和样本方差s2分别为 =1700.02+1800.09+1900.22+2000.33+2100.24+2200.08+2300
23、.02=200, s2=(-30)20.02+(-20)20.09+(-10)20.22+00.33+1020.24+2020.08+3020.02=150. (2)(i)由(1)知,ZN(200,150), 从而P(187.8Z212.2)=P(200-12.2Z200+12.2)=0.682 6. (ii)由(i)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6, 依题意知XB(100,0.682 6),所以EX=1000.682 6=68.26. x x 思路分析思路分析 (1)根据直方图求得样本平均数和样本方差s2; (2)(i)由(1)知ZN(200,
展开阅读全文