书签 分享 收藏 举报 版权申诉 / 18
上传文档赚钱

类型广东省深圳市宝安区2018-2019学年高二数学上学期期末调研试题文含答案.doc

  • 上传人(卖家):副主任
  • 文档编号:824829
  • 上传时间:2020-11-03
  • 格式:DOC
  • 页数:18
  • 大小:923.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《广东省深圳市宝安区2018-2019学年高二数学上学期期末调研试题文含答案.doc》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    广东省 深圳市 宝安区 2018 _2019 年高 数学 上学 期期 调研 试题 答案 下载 _考试试卷_数学_高中
    资源描述:

    1、 广东省深圳市宝安区广东省深圳市宝安区 20182018- -20192019 学年第一学期高二文科学年第一学期高二文科 数学期末调研试题数学期末调研试题 一、选择题(本大题共一、选择题(本大题共 1010 小题,共小题,共 50.050.0 分)分) 1.下列说法正确的是() A. “,若,则且”是真命题 B. 在同一坐标系中,函数与的图象关于 轴对称 C. 命题“,使得”的否定是“,都有” D. ,“”是“”的充分不必要条件 【答案】B 【解析】 【分析】 由逆否命题的真假可判断 A, ,判断点在函数图象上时,是否有在函数 的图象上可判断 B,由特称命题的否定判断 C,解不等式可知两条件的

    2、关系. 【详解】对于 A,判断命题“,若,则且”是否为真命题,可以通 过判断其逆否命题:“,若或,则”为假命题,知原命题为假命题; 对于 B,在同一坐标系中,若点在函数图象上,则有在函数的图 象上,所以函数与的图象关于 轴对称正确; 对于 C,由于特称命题的否定为全称命题,所以命题“,使得”的否定是 “,都有”,所以 C 不正确; 对于 D,由,可得或,所以“”是“”的必要不充分条件,所以 D 不正 确. 故选 B. 【点睛】本题属于一道综合题,涉及到图象的对称性及互为逆否关系的命题的真假判断,特 称命题的否定及命题的充分性和必要性的判断,属于中档题. 2.已知双曲线:与双曲线:,给出下列说法

    3、,其中错误的是( ) A. 它们的焦距相等 B. 它们的焦点在同一个圆上 C. 它们的渐近线方程相同 D. 它们的离心率相等 【答案】D 【解析】 由题知则两双曲线的焦距相等且,焦点都在圆的圆上,其实为 圆与坐标轴交点渐近线方程都为,由于实轴长度不同故离心率不同故本题答 案选 , 3.在等比数列中,“是方程的两根”是“”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】D 【解析】 由 韦 达 定 理 知, 则, 则 等 比 数 列 中, 则 在常数列或中,不是所给方程的两根 则在等比数列中, “ ,是方程的两根”是“”的充分不必要条件故

    4、本题答案选 4.在中,已知,且是方程的两根,则的长 度为 A. 2 B. 4 C. 6 D. 7 【答案】D 【解析】 【分析】 由方程的解求出的值,根据余弦定理即可求出的长度 【详解】 是方程 的两根, ,或, 由余弦定理, 则,故选 D 【点睛】本题主要考查余弦定理的应用,属于基础题对余弦定理一定要熟记两种形式: (1) ; (2),同时还要熟练掌握运用两种形式的条件.另外,在 解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在 解题中直接应用. 5.在 上定义运算,若存在使不等式,成立,则实数 的 取值范围为 A. B. C. D. 【答案】A 【解析】 【分析】

    5、由新定义的运算, 把不等式化为, 分离出 和 , 利用函数的最值求关于 的 不等式的解集即可 【详解】由运算知, 不等式化为, 即; 设 , 则的最大值是; 令, 即, 解得, 实数 的取值范围是,故选 A 【点睛】本题考查了新定义与不等式和函数的应用问题,是中档题新定义题型的特点是: 通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求 考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移, 达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质, 按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得

    6、以解决. 6.已知直线、经过圆的圆心,则的最小值是 A. 9 B. 8 C. 4 D. 2 【答案】A 【解析】 【分析】 由圆的一般方程得圆的标准方程为,所以圆心坐标为,由直 线过圆心, 将圆心坐标代入得, 所以, 当且仅当时,即时,等号成立,所以最小值为 9 【详解】圆化成标准方程,得, 圆的圆心为,半径 直线经过圆心 C,即, 因此, 、,当且仅当时等号成立 由此可得当,即且时,的最小值为 9 故选:A 【点睛】若圆的一般方程为 ,则圆心坐标为, 半径 7.A,B,C是的内角,其中,则的取值范围 A. B. C. D. 【答案】B 【解析】 【分析】 利用两角和与差的正弦公式、三角形内角

    7、和定理,将化为,根据正弦函数 的单调性即可得结果 【详解】因为 所以 , , ,故选 B 【点睛】本题考查了两角和与差的正弦公式、三角形内角和定理及其三角函数的单调性,属 于中档题形如,的函数求值域,分两步: (1)求出 的范围; (2)由的范围结合正弦函数的单调性求出,从而可求出函数的值域. 8.函数的图象在点处的切线的倾斜角为( ) A. B. 0 C. D. 1 【答案】A 【解析】 试题分析:,故选 A. 考点:导数的几何意义. 【易错点睛】本题主要考查了导数的几何意义.求函数的切线方程的注意事项: (1)首先应判 断所给点是不是切点,如果不是,要先设出切点.(2)切点既在原函数的图象

    8、上也在切线上, 可将切点代入两者的函数解析式建立方程组.(3)在切点处的导数值就是切线的斜率,这是 求切线方程最重要的条件.要从方程的角度上理解导数的几何意义. 9.已知两圆:,:,动圆在圆内部且和圆相内切,和 圆相外切,则动圆圆心的轨迹方程为 A. B. C. D. 【答案】D 【解析】 【分析】 设出动圆半径为 ,根据两圆外切和内切判定圆心距与两圆半径和差的关系,消去 ,根据椭圆 的定义,即可求得动圆圆心的轨迹,进而可求其方程 【详解】设动圆圆心,半径为 , 圆与圆:内切,与圆:外切, , , 由椭圆的定义,的轨迹为以,为焦点的椭圆, 可得,;则, 动圆圆心的轨迹方程:,故选 D 【点睛】

    9、 本题主要考查两圆的位置关系及椭圆的定义和标准方程, 属于中档题 两圆半径为, 两圆心间的距离 ,比较 与及 与的大小,即可得到两圆的位置关系. 10.(2017 新课标全国II理科)我国古代数学名著算法统宗中有如下问题:“远望巍巍 塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座 7 层塔共挂 了 381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯 A. 1 盏 B. 3 盏 C. 5 盏 D. 9 盏 【答案】B 【解析】 【详解】设塔顶的 a1盏灯, 由题意an是公比为 2 的等比数列, S7=381, 解得 a1=3 故选:B 二、填空

    10、题(本大题共二、填空题(本大题共 4 4 小题,共小题,共 20.020.0 分)分) 11.孙子算经是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十 颗,人别加三颗.问:五人各得几何?”其意思为“有 5 个人分 60 个橘子,他们分得的橘子数 成公差为 3 的等差数列,问 5 人各得多少橘子.”这个问题中,得到橘子最少的人所得的橘子 个数是_ 【答案】6 【解析】 设等差数列,首项 ,公差为 ,则,解得,即得到橘子最少的人所 得的橘子个数是 6,故填 6. 12.如图,测量河对岸的塔高时,可以选与塔底 在同一水平面内的两个测点 与 ,现测得 ,米, 并在点 测得塔顶 的仰角

    11、为, 则塔高_ 米 【答案】 【解析】 【分析】 中,由三角形内角和定理求出,利用正弦定理求得的值,在直角 中求出的值 【详解】因为, 所以, 在中,根据正弦定理可知, 即,解得, 在直角中, , 所以塔高米 故答案为. 【点睛】本题主要考查正弦定理的实际应用,以及直角三角形的边角关系应用问题,是基础 题正弦定理是解三角形的有力工具,其常见用法有以下三种: (1)知道两边和一边的对角, 求另一边的对角(一定要注意讨论钝角与锐角) ; (2)知道两角与一个角的对边,求另一个角 的对边; (3)证明化简过程中边角互化; (4)求三角形外接圆半径. 13.已知数列的通项公式为,则数列前 15 项和为

    12、的值为_ 【答案】. 【解析】 分析:,利用裂项相消法即可得结果 详解:因为数列的通项公式为, 所以 ,故答案为. 点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这 一难点的方法是根据式子的结构特点,常见的裂项技巧:(1); (2) ; (3); (4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导 致计算结果错误. 14.过抛物线焦点的直线交抛物线于两点,若,则的中点 到y轴的距离 等于_ 【答案】4 【解析】 【分析】 过 分别作准线的垂线,垂足分别为,由为直角梯形的中位线及抛物线的定义求 出, 到 轴的距离为所求 【详解】抛物线焦点,准线

    13、方程为, 由于的中点为 ,过 分别作准线的垂线, 垂足分别为交纵轴于点 ,如图所示: 由抛物线的定义可知, 则由为直角梯形的中位线知, ,故答案为 4 【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的 数学思想,属于中档题与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决 这类问题一定要注意点到点的距离与点到直线的距离的转化: (1)将抛线上的点到准线距离 转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得 到解决. 三、解答题(本大题共三、解答题(本大题共 6 6 小小题,共题,共 80.080.0 分)分) 15.已

    14、知实数x,y满足,记点所对应的平面区域为D 在平面直角坐标系xOy中画出区域用阴影部分标出 ,并求区域D的面积S; 试判断点是否在区域D内,并说明理由 【答案】(1)画图见解析;。 (2) 点在区域 内,理由见解析. 【解析】 分析: (1)画出三个不等式表示的平面区域,取其公共部分即为所求 (2)将点代入三个 不等式中判断不等式是否同时成立,从而可得结论 详解: (1)画出不等式组表示的区域(如图阴影部分所示) 由,解得,故点 结合图形可得区域 的面积 (2)点在区域 内理由如下: 因为, 所以三个不等式同时成立, 所以点在区域 内 点睛:不等式组表示的平面区域是各个不等式所表示的平面区域点

    15、集的交集,画出图形后, 面积关系可结合平面知识探求判断点是否在不等式组表示的平面区域内,可根据点的坐标 是否满足不等式组即可得到结论 16.已知函数 (1)若,且函数有零点,求实数 的取值范围; (2)当时,解关于 的不等式; (3)若正数满足,且对于任意的恒成立,求实数的值 【答案】(1) ; (2) 时;时;时; (3) ; 【解析】 【分析】 (1)由可得结果;(2)时, ,分三种情 况讨论,分别利用一元二次不等式的解法求解即可;(3)时恒成立,当且仅 当,即,即,由,可得,则,解不等式即可 的结果 【详解】(1) 时, 由函数有零点,可得,即或; (2) 时, , 当即时,的解集为,

    16、当即时,的解集为, 当即时,的解集为; (3)二次函数开口响上,对称轴,由可得在单调递增, 时恒成立,当且仅当,即,即, 由,可得, 则,由可得,即,则, 此时,则 【点睛】本题主要考查函数的零点、一元二次不等式的解法、二次函数的性质以及分类讨论 思想的应用,属于中档题分类讨论思想解决高中数学问题的一种重要思想方法,是中学数 学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力 与速度运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点充分利用分 类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解 题当中 17.ABC的内角的对

    17、边分别为,已知ABC的面积为 (1)求; (2)若求ABC的周长. 【答案】(1)(2) . 【解析】 试题分析: (1)由三角形面积公式建立等式,再利用正弦定理将边化成角,从 而得出的值; (2)由和计算出,从而求出角 , 根据题设和余弦定理可以求出和的值,从而求出的周长为. 试题解析: (1)由题设得,即. 由正弦定理得. 故. (2)由题设及(1)得,即. 所以,故. 由题设得,即. 由余弦定理得,即,得. 故的周长为. 点睛:在处理解三角形问题时, 要注意抓住题目所给的条件, 当题设中给定三角形的面积, 可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转 化为

    18、边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求 面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件, 求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式, 如,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体 的值直接利用余弦定理和给定条件即可. 18.已知各项都是正数的数列的前n项和为, 求数列的通项公式; 设数列满足:,数列的前n项和求证: 若对任意恒成立,求 的取值范围 【答案】 (1); (2)证明见解析; (3) 【解析】 试题分析: ()由和项求数列通项,注意分类讨论:当,得, 当时,得数列递推关系

    19、式,因式分解可得,根据等差数列定 义得数列通项公式() 因为, 所以利用叠加法求通项公式:, 因此,从而利用裂项相消法求和得 ,即证得()不等式恒 成立问题,一般先变量分离,转化为求对应函数最值问题:由得 ,而有最大值,所以 试题解析: (1)时, 是以为首项,为公差的等差数列 4 分 (2) , 即9 分 (3)由得, 当且仅当时,有 最大值,14 分 考点:等差数列定义,叠加法求通项,裂项相消法求和 【方法点睛】裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵 消中间若干项的方法,裂项相消法适用于形如(其中是各项均不为零的等差数 列,c 为常数)的数列.裂项相消法求和,

    20、常见的有相邻两项的裂项求和(如本例) ,还有一类 隔一项的裂项求和,如或. 19.已知函数,和直线m:,且 求a的值; 是否存在k的值,使直线m既是曲线的切线,又是曲线的切线?如果存在, 求出k的值;若不存在,请说明理由 【答案】(1) a=-2 (2) 公切线是 y=9,此时 k=0 【解析】 【分析】 (1)计算 f(x),进而由 f(1)0 可得解; (2)直线 m 是曲线 yg(x)的切线,设切点为(x0,36x012),由导数得切线斜率,进而得 切线方程,带入(0,9) 得 x01,再分别计算当 f(x)0 或 f(x)12 时的切线,进而 找到公切线. 【详解】(1)f(x)3ax

    21、 26x6a,f(1)0. 即 3a66a0,a2. (2)存在 直线 m 恒过定点(0,9),直线 m 是曲线 yg(x)的切线, 设切点为(x0,36x012), g(x0)6x06,切线方程为 y(36x012)(6x06)(xx0), 将点(0,9)代入,得 x01. 当 x01 时,切线方程为 y9; 当 x01 时,切线方程为 y12x9. 由 f(x)0,得6x 26x120. 即有 x1 或 x2, 当 x1 时,yf(x)的切线方程为 y18; 当 x2 时,yf(x)的切线方程为 y9. 公切线是 y9. 又令 f(x)12,得6x 26x1212, x0 或 x1. 当

    22、x0 时,yf(x)的切线方程为 y12x11; 当 x1 时,yf(x)的切线方程为 y12x10, 公切线不是 y12x9. 综上所述公切线是 y9,此时 k0. 【点睛】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点 及斜率,其求法为:设是曲线上的一点,则以 的切点的切线方程为: 若曲线在点的切线平行于 轴(即导数不存在)时,由切 线定义知,切线方程为 20.已知椭圆C:的离心率为,且过点 求椭圆C的方程; 若是椭圆C上的两个动点,且使的角平分线总垂直于x轴,试判断直线PQ的 斜率是否为定值?若是,求出该值;若不是,说明理由. 【答案】 【解析】 试题分析:试题

    23、分析: (I)由离心率可得关系,再将点 坐标代入,可得间关系,又,解 方程可得的值; (II)由的角平分线总垂直于 轴,可判断直线的斜率互为相 反数,由两直线都过 点,由点斜式可写出直线方程一一与椭圆方程联立,消去的值, 可得一元二次方程,又 点满足条件,可求得点的坐标,用 表示再由斜率公式可得直线 的斜率为定值 试题解析:试题解析: () 因为椭圆 的离心率为, 且过点, 所以, . 因为, 解得, , 所以椭圆 的方程为. ()法 1:因为的角平分线总垂直于 轴, 所以与所在直线关于直线对 称. 设直线的斜率为 , 则直线的斜率为. 所以直线的方程为,直线的方程为. 设点, , 由消去 ,

    24、得. 因为点在椭圆 上, 所以是方程的一个根, 则, 所以. 同理. 所以. 又. 所以直线的斜率为. 所以直线的斜率为定值,该值为 . 法 2:设点, 则直线的斜率, 直线的斜率. 因为的角平分线总垂直于 轴, 所以与所在直线关于直线对称. 所以, 即, 因为点在椭圆 上, 所以, . 由得, 得, 同理由得, 由得, 化简得, 由得, 得. 得,得. 所以直线的斜率为为定值. 法 3:设直线的方程为,点, 则, 直线的斜率, 直线的斜率. 因为的角平分线总垂直于 轴, 所以与所在直线关于直线对称. 所以, 即, 化简得. 把代入上式, 并化简得 . (*) 由消去 得, (*) 则, 代入(*)得, 整理得, 所以或. 若, 可得方程(*)的一个根为 ,不合题意. 若时, 合题意. 所以直线的斜率为定值,该值为.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:广东省深圳市宝安区2018-2019学年高二数学上学期期末调研试题文含答案.doc
    链接地址:https://www.163wenku.com/p-824829.html
    副主任
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库