书签 分享 收藏 举报 版权申诉 / 18
上传文档赚钱

类型2024年中考数学二轮题型突破题型9 二次函数综合题 类型1 二次函数公共点问题(专题训练)(教师版).docx

  • 上传人(卖家):现有分享
  • 文档编号:8207590
  • 上传时间:2025-01-04
  • 格式:DOCX
  • 页数:18
  • 大小:934.87KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2024年中考数学二轮题型突破题型9 二次函数综合题 类型1 二次函数公共点问题(专题训练)(教师版).docx》由用户(现有分享)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2024年中考数学二轮题型突破题型9 二次函数综合题 类型1 二次函数公共点问题专题训练教师版 2024 年中 数学 二轮 题型 突破 二次 函数 综合 类型 公共 问题 专题 训练 教师版 下载 _二轮专题_中考复习_数学_初中
    资源描述:

    1、类型一 二次函数公共点问题(专题训练)1(2023湖北荆州统考中考真题)已知:关于的函数(1)若函数的图象与坐标轴有两个公共点,且,则的值是_;(2)如图,若函数的图象为抛物线,与轴有两个公共点,并与动直线交于点,连接,其中交轴于点,交于点设的面积为,的面积为当点为抛物线顶点时,求的面积;探究直线在运动过程中,是否存在最大值?若存在,求出这个最大值;若不存在,说明理由【答案】(1)0或2或;(2)6,存在,【分析】(1)根据函数与坐标轴交点情况,分情况讨论函数为一次函数和二次函数的时候,按照图像的性质以及与坐标轴交点的情况即可求出值(2)根据和的坐标点即可求出抛物线的解析式,即可求出顶点坐标,

    2、从而求出长度,再利用和的坐标点即可求出的直线解析式,结合即可求出点坐标,从而求出长度,最后利用面积法即可求出的面积观察图形,用值表示出点坐标,再根据平行线分线段成比例求出长度,利用割补法表示出和,将二者相减转化成关于的二次函数的顶点式,利用取值范围即可求出的最小值【详解】(1)解:函数的图象与坐标轴有两个公共点,当函数为一次函数时,当函数为二次函数时,若函数的图象与坐标轴有两个公共点,即与轴,轴分别只有一个交点时,当函数为二次函数时,函数的图象与坐标轴有两个公共点, 即其中一点经过原点,综上所述,或0故答案为:0或2或(2)解:如图所示,设直线与交于点,直线与交于点 依题意得:,解得:抛物线的

    3、解析式为:点为抛物线顶点时,由,得直线的解析式为,在直线上,且在直线上,则的横坐标等于的横坐标,故答案为:6存在最大值,理由如下:如图,设直线交轴于由得:,即,当时,有最大值,最大值为故答案为:【点睛】本题考查了二次函数的综合应用,涉及到函数与坐标轴交点问题,二次函数与面积问题,平行线分线段成比例,解题的关键在于分情况讨论函数与坐标轴交点问题,以及二次函数最值问题2(2023云南统考中考真题)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系数形结合就是把两者结合

    4、起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题同学们,请你结合所学的数学解决下列问题在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点设函数(实数为常数)的图象为图象(1)求证:无论取什么实数,图象与轴总有公共点;(2)是否存在整数,使图象与轴的公共点中有整点?若存在,求所有整数的值;若不存在,请说明理由【答案】(1)见解析;(2)或或或【分析】(1)分与两种情况讨论论证即可;(2)当时,不符合题意,当时,对于函数,令,得,从而有或,根据整数,使图象与轴的公共点中有整点,即为整数,从而有或或或或或或或,解之即可【详解】(1)解:当时,函数为一次函数,此时,

    5、令,则,解得,一次函数与轴的交点为;当时,函数为二次函数,当时,与轴总有交点,无论取什么实数,图象与轴总有公共点;(2)解:当时,不符合题意,当时,对于函数,令,则,或或,整数,使图象与轴的公共点中有整点,即为整数,或或或或或或或,解得或或(舍去)或(舍去)或或或(舍去)或(舍去),或或或【点睛】本题主要考查了一次函数的性质,二次函数与一元二次方程之间的关系以及二次函数的性质,熟练掌握一次函数的性质,二次函数与一元二次方程之间的关系,二次函数的性质以及数形相结合的思想是解题的关键3.已知抛物线(,是常数),下列四个结论:若抛物线经过点,则;若,则方程一定有根;抛物线与轴一定有两个不同的公共点;

    6、点,在抛物线上,若,则当时,其中正确的是_(填写序号)【答案】【分析】将代入解析式即可判定;由b=c,可得a=-2c,cx2+bx+a=0可得cx2+cx-2c=0,则原方程可化为x2+x-2=0,则一定有根x=-2;当b2-4ac0时,图像与x轴少于两个公共点,只有一个关于a,b,c的方程,故存在a、b、c使b2-4ac00,故错误;若0ac,则有b|c|a|,|b|2|a|,所以对称轴,因为a0在对称轴左侧,函数单调递减,所以当x1x2y2,故正确【详解】解:抛物线经过点,即9a-3b+c=0b=2a故正确;b=c,a=-2c,cx2+bx+a=0cx2+cx-2c=0,即x2+x-2=0

    7、一定有根x=-2故正确;当b2-4ac0时,图像与x轴少于两个公共点,只有一个关于a、b、c的方程,故存在a、b、c使b2-4ac0,故错误;若0ac,则有b|c|a|,|b|2|a|,所以对称轴,因为a0在对称轴左侧,函数单调递减,所以当x1x2y2,故正确故填:【点睛】本题主要考查二次函数的图像与性质以及二元一次方程,灵活运用二次函数的图像与性质成为解答本题的关键4.已知抛物线(1)如图,若抛物线图象与轴交于点,与轴交点连接求该抛物线所表示的二次函数表达式;若点是抛物线上一动点(与点不重合),过点作轴于点,与线段交于点是否存在点使得点是线段的三等分点?若存在,请求出点的坐标;若不存在,请说

    8、明理由(2)如图,直线与轴交于点,同时与抛物线交于点,以线段为边作菱形,使点落在轴的正半轴上,若该抛物线与线段没有交点,求的取值范围【答案】(1),存在,点P坐标为(2,-3)或(,-),理由见解析(2)b【分析】(1)直接用待定系数法求解;先求出直线AB的解析式,设点M(m,m-3)点P(m,m2-2m-3)若点是线段的三等分点,则或,代入求解即可;(2)先用待定系数法求出n的值,再利用勾股定理求出CD的长为5,因为四边形CDFE是菱形,由此得出点E的坐标再根据该抛物线与线段没有交点,分两种情况(CE在抛物线内和CE在抛物线右侧)进行讨论,求出b的取值范围(1)解:把,代入,得,解得:,解:

    9、存在,理由如下, 设直线AB的解析式为y=kx+b,把, 代入,得,解得,直线AB的解析式为y=x-3,设点M(m,m-3)、点P(m,m2-2m-3)若点是线段的三等分点,则或,即或,解得:m=2或m=或m=3,经检验,m=3是原方程的增根,故舍去,m=2或m=点P坐标为(2,-3)或(,-)(2)解:把点D(-3,0)代入直线,解得n=4,直线,当x=0时,y=4,即点C(0,4)CD=5,四边形CDFE是菱形,CE=EF=DF=CD=5,点E(5,4)点在抛物线上,(-3)2-3b+c=0,c=3b-9,该抛物线与线段没有交点,分情况讨论当CE在抛物线内时52+5b+3b-94解得:b4

    10、解得:b综上所述,b【点睛】此题考查了二次函数和一次函数以及图形的综合,解题的关键是数形结合和分情况讨论5.已知抛物线经过点(0,2),且与轴交于A、B两点设k是抛物线与轴交点的横坐标;M是抛物线的点,常数m0,S为ABM的面积已知使S=m成立的点M恰好有三个,设T为这三个点的纵坐标的和(1)求c的值;(2)直接写出T的值;(3)求的值【答案】(1)2(2)(3)【分析】(1)将点(0,2)带入直接求解;(2)找到三个点M的纵坐标之间的而关系,即可求解;(3)将函数转化为方程,即可表示出,带入原式即可求解(1)解:将点(0,2)带入得:(2)由(1)可知,抛物线的解析式为,当S=m时恰好有三个

    11、点M满足,必有一个M为抛物线的顶点,且M纵坐标互为相反数当时,即此时M( , ),则另外两个点的纵坐标为(3)由题可知,则则【点睛】本题考查二次函数的性质、二次函数与方程的关系、代数式求值等,属于综合题目,灵活运用代数计算是解题的关键6.已知抛物线的对称轴为直线(1)求a的值;(2)若点M(x1,y1),N(x2,y2)都在此抛物线上,且,比较y1与y2的大小,并说明理由;(3)设直线与抛物线交于点A、B,与抛物线交于点C,D,求线段AB与线段CD的长度之比【答案】(1);(2),见解析;(3)【分析】(1)根据对称轴,代值计算即可(2)根据二次函数的增减性分析即可得出结果(3)先根据求根公式

    12、计算出,再表示出,=,即可得出结论【详解】解:(1)由题意得:(2)抛物线对称轴为直线,且当时,y随x的增大而减小,当时,y随x的增大而增大当时,y1随x1的增大而减小,时,时,同理:时,y2随x2的增大而增大时, 时, (3)令 令 AB与CD的比值为【点睛】本题考查二次函数的图像性质、二次函数的解析式、对称轴、函数的交点、正确理解二次函数的性质是关键,利用交点的特点解题是重点7.抛物线与x轴交于A、B两点,与y轴交于点C,且(1)求抛物线的解析式;(2)如图1,点P是抛物线上位于直线上方的一点,与相交于点E,当时,求点P的坐标;(3)如图2,点D是抛物线的顶点,将抛物线沿方向平移,使点D落

    13、在点处,且,点M是平移后所得抛物线上位于左侧的一点,轴交直线于点N,连结当的值最小时,求的长【答案】(1);(2)或;(3)【分析】(1)利用待定系数法即可得;(2)设点的坐标为,先利用待定系数法求出直线的解析式,再根据可得点的坐标,代入直线的解析式求解即可得;(3)先根据求出点的坐标,再根据二次函数图象的平移规律得出平移后的函数解析式,设点的坐标,从而可得点的坐标,然后根据两点之间的距离公式可得,最后根据两点之间线段最短、垂线段最短求解即可得【详解】解:(1)由题意,将点代入得:,解得,则抛物线的解析式为;(2)对于二次函数,当时,解得或,设点的坐标为,点的坐标为,解得,设直线的解析式为,将

    14、点代入得:,解得,则直线的解析式为,将点代入得:,解得或,当时,此时,当时,此时,综上,点的坐标为或;(3)二次函数的顶点坐标为,设点的坐标为,解得,则平移后的二次函数的解析式为,设直线的解析式为,将点代入得:,解得,则直线的解析式为,设点的坐标为,则点的坐标为,如图,连接,过点作于点,过点作于点,交于点,连接,轴,由两点之间线段最短得:的最小值为,由垂线段最短得:当点与点重合时,取得最小值,此时点与点重合,则点的纵坐标与点的纵坐标相等,即,解得,则,【点睛】本题考查了利用待定系数法求二次函数的解析式、二次函数图象的平移规律、垂线段最短等知识点,较难的是题(3),正确求出平移后的抛物线的解析式

    15、是解题关键8.已知二次函数的图象开口向上,且经过点,(1)求的值(用含的代数式表示);(2)若二次函数在时,的最大值为1,求的值;(3)将线段向右平移2个单位得到线段若线段与抛物线仅有一个交点,求的取值范围【答案】(1);(2);(3)【分析】(1)利用待定系数法将点A、B的坐标代入即可(2)根据抛物线图像分析得在范围内,的最大值只可能在或处取得,进行分类讨论若时,若,计算即可(3)先利用待定系数法写出直线AB的解析式,再写出平移后的解析式,若线段与抛物线仅有一个交点,即方程在的范围内仅有一个根,只需当对应的函数值小于或等于0,且对应的函数值大于或等于即可【详解】(1)抛物线过点,(2)由(1)可得,在范围内,的最大值只可能在或处取得当时,当时,若时,即时,得,得若,即时,得,此时,舍去,即时,得,舍去综上知,的值为(3)设直线的解析式为,直线过点,将线段向右平移2个单位得到线段,的解析式满足,即又抛物线的解析式为,又线段与抛物线在范围内仅有一个交点,即方程在的范围内仅有一个根,整理得在的范围内仅有一个根,即抛物线在的范围内与轴仅有一个交点只需当对应的函数值小于或等于0,且对应的函数值大于或等于即可即时,得,当时,得, 综上的取值范围为【点睛】本题考查一次函数解析式、二次函数解析式、二次函数的最值、图像与x轴的交点与方程的根的情况、熟练掌握二次函数的图像知识是解题的关键

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2024年中考数学二轮题型突破题型9 二次函数综合题 类型1 二次函数公共点问题(专题训练)(教师版).docx
    链接地址:https://www.163wenku.com/p-8207590.html
    现有分享
         内容提供者      个人认证 实名认证
    相关资源 更多
  • 2025年中考数学二轮复习:圆的切线证明 专题练习题汇编(含答案解析).docx2025年中考数学二轮复习:圆的切线证明 专题练习题汇编(含答案解析).docx
  • 2025年中考数学二轮复习:三角形的证明 专题练习题汇编(含答案).docx2025年中考数学二轮复习:三角形的证明 专题练习题汇编(含答案).docx
  • 2025年中考数学二轮复习:二次函数新定义问题 专题练习题汇编(含答案解析).docx2025年中考数学二轮复习:二次函数新定义问题 专题练习题汇编(含答案解析).docx
  • 2025年中考数学二轮复习:二元一次方程组 专题练习题汇编(含答案解析).docx2025年中考数学二轮复习:二元一次方程组 专题练习题汇编(含答案解析).docx
  • 2025年中考数学二轮复习:矩形 专题练习题汇编(含答案解析).docx2025年中考数学二轮复习:矩形 专题练习题汇编(含答案解析).docx
  • 2025年中考数学二轮复习:全等三角形 专题练习题汇编(含答案).docx2025年中考数学二轮复习:全等三角形 专题练习题汇编(含答案).docx
  • 2025年中考数学二轮复习:新定义试题 专题练习题汇编(含答案).docx2025年中考数学二轮复习:新定义试题 专题练习题汇编(含答案).docx
  • 2025年中考数学二轮复习:平行四边形 专题练习题汇编(含答案解析).docx2025年中考数学二轮复习:平行四边形 专题练习题汇编(含答案解析).docx
  • 2025年中考数学二轮复习:几何压轴冲刺 专题练习题汇编(含答案).docx2025年中考数学二轮复习:几何压轴冲刺 专题练习题汇编(含答案).docx
  • 2024年中考数学二轮题型突破题型11 综合探究题 类型3 与折叠有关的探究题(专题训练)(学生版).docx2024年中考数学二轮题型突破题型11 综合探究题 类型3 与折叠有关的探究题(专题训练)(学生版).docx
  • 2024年中考数学二轮题型突破题型9 二次函数综合题 类型12 二次函数与圆的问题(专题训练)(教师版).docx2024年中考数学二轮题型突破题型9 二次函数综合题 类型12 二次函数与圆的问题(专题训练)(教师版).docx
  • 2024年中考数学二轮题型突破题型11 综合探究题 类型2 与动点有关的探究题(专题训练)(学生版).docx2024年中考数学二轮题型突破题型11 综合探究题 类型2 与动点有关的探究题(专题训练)(学生版).docx
  • 2024年中考数学二轮题型突破题型11 综合探究题 类型1 非动态探究题(专题训练)(学生版).docx2024年中考数学二轮题型突破题型11 综合探究题 类型1 非动态探究题(专题训练)(学生版).docx
  • 2024年中考数学二轮题型突破题型9 二次函数综合题 类型7 二次函数与直角三角形有关的问题(专题训练)(教师版).docx2024年中考数学二轮题型突破题型9 二次函数综合题 类型7 二次函数与直角三角形有关的问题(专题训练)(教师版).docx
  • Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库