2025年山东济南中考数学一轮复习 教材考点复习 ——一次函数的实际应用.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2025年山东济南中考数学一轮复习 教材考点复习 ——一次函数的实际应用.docx》由用户(风feng866)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2025年山东济南中考数学一轮复习 教材考点复习 一次函数的实际应用 2025 山东济南 中考 数学 一轮 复习 教材 考点 一次 函数 实际 应用 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、2025年山东济南中考数学一轮复习 教材考点复习 一次函数的实际应用 学生版高频考点过关考点一一次函数图象的实际应用考法一行程问题同向1.(2024章丘一模)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系式;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系,则货车出发 小时与轿车相遇.2.(2024济阳一模)澄波湖公园有一条笔直的健身跑道,每天有很多市民在此晨练,成为济阳区一道靓丽的风景.每天早晨小红与父亲匀速跑步,已知父女俩起点、终点均相同,起点与终点间的距离为600 m,约定先到终点
2、的原地休息等待另一个人.已知小红先出发20 s,如图两人之间的距离y(m)与父亲出发的时间x(s)的函数关系如图所示,父女两人之间的距离为80 m时,父亲出发的时间x为 s.考法二行程问题相向3.(2024市中一模)A,B两地相距60 km,甲、乙两人骑车分别从A,B两地同时出发,相向而行,匀速行驶,乙在途中休息了0.5 h后按原速度继续前进.两人到A地距离s(km)和时间t(h)的关系如图所示,则出发 h后,两人相遇.4.(2023市中一模)在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲、乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程
3、,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图表示,当甲车出发 h时,两车相距350 km.考法三行程问题折返5.(2024历下二模)已知甲、乙两地相距180 km,一辆出租车从甲地出发往返于甲、乙两地,一辆货车沿同一条公路从甲地前往乙地,两车同时出发,出租车到达乙地后立即以相同的速度返回,在货车到达乙地1小时后,出租车返回到甲地.两车离甲地的距离s(km)和行驶时间t(h)的函数关系如图所示,则两车在途中相遇时的时间是( )A.2.1 hB.2.2 hC.2.3 hD.2.4 h6.(2023历下九校联考)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送
4、达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是( )A.53 h B.32 hC.75 hD.43 h考法四其他问题7.(2024济南)某公司生产了A,B两款新能源电动汽车,如图,l1,l2分别表示A款,B款新能源电动汽车充满电后电池的剩余电量y(kwh)与汽车行驶路程x(km)的关系,当两款新能源电动汽车的行驶路程都是300 km时,A款新能源电动汽车电池的剩余电量比B款新能源电动汽车电池的剩余电量多 kwh.8.(2024东南片区一模)如图是某市出租车的所付车费与乘车里程之间的关系图象,分
5、别由线段AB,BC和射线CD组成.如果小明同学乘坐出租车5 km付车费14元,那么张老师乘坐出租车里程是11 km,他应该付的车费是 元.9.(2021济南)漏刻是我国古代的一种计时工具.据史书记载,西周时期就已经出现了漏刻,这是中国古代人民对函数思想的创造性应用.小明同学依据漏刻的原理制作了一个简单的漏刻计时工具模型,研究中发现水位h(cm)是时间t(min)的一次函数,如表是小明记录的部分数据,其中有一个h的值记录错误,请排除后利用正确的数据确定当h为8 cm时,对应的时间t为 min.t(min)1235h(cm)2.42.83.44考点二一次函数与方程结合的实际应用考法一一次函数的最值
6、问题10.(2024济南)近年来光伏建筑一体化广受关注.某社区拟修建A,B两种光伏车棚.已知修建2个A种光伏车棚和1个B种光伏车棚共需投资8万元,修建5个A种光伏车棚和3个B种光伏车棚共需投资21万元.(1)求修建每个A种、B种光伏车棚分别需投资多少万元.(2)若修建A,B两种光伏车棚共20个,要求修建的A种光伏车棚的数量不少于修建的B种光伏车棚数量的2倍,问:修建多少个A种光伏车棚时,可使投资总额最少?最少投资总额为多少万元?11.(2023济南)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型,A型机器人模型单价比B型机器人模型单价多200元,用2 000元购买A型机器人
7、模型和用1 200元购买B型机器人模型的数量相同.(1)求A型、B型机器人模型的单价分别是多少元;(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?12.(2022济南)为增加校园绿化面积,某校计划购买甲、乙两种树苗.已知购买20棵甲种树苗和16棵乙种树苗共花费1 280元,购买1棵甲种树苗比1棵乙种树苗多花费10元.(1)求甲、乙两种树苗每棵的价格分别是多少元.(2)若购买甲、乙两种树苗共100棵,且购买乙种树苗的数量不超过甲种树苗的3
8、倍.则购买甲、乙两种树苗各多少棵时花费最少?请说明理由.考法二优化选择问题13.(2024东南片区一模)山东省某学校举行“书香校园”读书活动,九年级计划购买A,B两种图书共300本,其中A种图书每本20元,B种图书每本30元.(1)若购进A,B两种图书刚好花费8 000元,求A,B两种图书分别购买了多少本.(2)若购买B种图书的数量不少于A种图书的数量,请设计一种购买方案使所需总费用最少,并求出该购买方案所需总费用.14.(2024商河一模)随着自媒体的盛行,网购及直播带货成为一种趋势,某农产基地准备借助自媒体对某种水果做营销宣传,采用线上及线下两种销售方式,统计销售情况发现,该水果的销售重量
9、和总收入如下表(总收入销售重量单价):线上销售水果重量/kg线下销售水果重量/kg总收入第一批40601 380第二批60401 320(1)求该水果线上、线下的销售单价各是多少.(2)若某公司计划从该地采购该水果1 000 kg,因保质期问题,准备采用线上、线下相结合的方式,因实际需要,线下采购该水果不得少于线上采购该水果重量的19,请你帮该公司设计出最省钱的采购方案.达标演练检测1.(2022济南)某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40 m.如图所示,设矩形一边长为x m,另一边长为y m,当x在一定范围内变化时,y随x的变化而变化,则
10、y与x满足的函数关系是( )A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系2.一种弹簧秤最大能称不超过10 kg的物体,不挂物体时弹簧的长为12 cm,每挂重1 kg物体,弹簧伸长0.5 cm.在弹性限度内,挂重后弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为( )A.y120.5xB.y120.5xC.y100.5xD.y0.5x3.(2024长清二模)小泽和小帅两个同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动,如图,折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象,则当小帅到达
11、乙地时,小泽距甲地的距离为 千米.4.我国古代数学经典著作九章算术记载:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之.问几何步及之?”如图是善行者与不善行者行走路程s(单位:步)关于善行者的行走时间t的函数图象,则两图象交点P的纵坐标是 .5.(2024历下一模)“体育承载着国家强盛、民族振兴的梦想,体育强则中国强,国运兴则体育兴.”为引导学生在体育锻炼中享受乐趣、增强体质,学校开展大课间活动,七年级五班拟组织学生参加跳绳活动,需购买A,B两种跳绳若干,已知购买3根A种跳绳和1根B种跳绳共需105元;购买5根A种跳绳和3根B种跳绳共需215元.(1)求A,B两种跳绳
12、的单价;(2)如果班级计划购买A,B两种跳绳共48根,B种跳绳个数不少于A种跳绳个数的2倍,那么购买跳绳所需最少费用是多少元?2025年山东济南中考数学一轮复习 教材考点复习 一次函数的实际应用 教师版高频考点过关考点一一次函数图象的实际应用考法一行程问题同向1.(2024章丘一模)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系式;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系,则货车出发3.9小时与轿车相遇.2.(2024济阳一模)澄波湖公园有一条笔直的健身跑道,每天有很多市民在此晨
13、练,成为济阳区一道靓丽的风景.每天早晨小红与父亲匀速跑步,已知父女俩起点、终点均相同,起点与终点间的距离为600 m,约定先到终点的原地休息等待另一个人.已知小红先出发20 s,如图两人之间的距离y(m)与父亲出发的时间x(s)的函数关系如图所示,父女两人之间的距离为80 m时,父亲出发的时间x为120或240s.考法二行程问题相向3.(2024市中一模)A,B两地相距60 km,甲、乙两人骑车分别从A,B两地同时出发,相向而行,匀速行驶,乙在途中休息了0.5 h后按原速度继续前进.两人到A地距离s(km)和时间t(h)的关系如图所示,则出发2.1h后,两人相遇.4.(2023市中一模)在一条
14、笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲、乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图表示,当甲车出发32h时,两车相距350 km.考法三行程问题折返5.(2024历下二模)已知甲、乙两地相距180 km,一辆出租车从甲地出发往返于甲、乙两地,一辆货车沿同一条公路从甲地前往乙地,两车同时出发,出租车到达乙地后立即以相同的速度返回,在货车到达乙地1小时后,出租车返回到甲地.两车离甲地的距离s(km)和行驶时间t(h)的函数关系如图所示,则两车在途中相遇时的时
展开阅读全文