书签 分享 收藏 举报 版权申诉 / 22
上传文档赚钱

类型2024-2025学年广东省华师附中初三数学试题中考冲刺七含解析.doc

  • 上传人(卖家):知识图书馆
  • 文档编号:8142480
  • 上传时间:2024-12-09
  • 格式:DOC
  • 页数:22
  • 大小:1.12MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2024-2025学年广东省华师附中初三数学试题中考冲刺七含解析.doc》由用户(知识图书馆)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2024 2025 学年 广东省 附中 初三 数学试题 中考 冲刺 解析 下载 _三轮冲刺_中考复习_数学_初中
    资源描述:

    1、2024-2025学年广东省华师附中初三数学试题中考冲刺七注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:(1)出租车的速度为100千米/时;(2)客车的速度为60千米/时;(3)两车相遇时,客车行驶了3.75小时;(4

    2、)相遇时,出租车离甲地的路程为225千米其中正确的个数有()A1个B2个C3个D4个2某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A22x=16(27x)B16x=22(27x)C216x=22(27x)D222x=16(27x)3将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )ABCD4把a的根号外的a移到根号内得()ABCD5平面直角坐标系中,若点A(a,b)在第三象限内,则点B(b,a)所在的象限是()A第一象限B

    3、第二象限C第三象限D第四象限6如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是()ABCD7如图,等腰三角形ABC底边BC的长为4 cm,面积为12 cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则BDM的周长最小值为( )A5 cmB6 cmC8 cmD10 cm8如图,ABC是O的内接三角形,BOC120,则A等于()A50B60C55D659如图,O中,弦BC与半径OA相交于点D,连接AB,OC,若A=60,ADC=85,则C的度数是()A25B

    4、27.5C30D3510将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,依次规律,第7个图形的小圆个数是()A56B58C63D72二、填空题(共7小题,每小题3分,满分21分)11袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有_个12要使式子有意义,则的取值范围是_13一个不透明的袋子中装有三个小球,它们除分别标有的数字 1,3,5 不同外,其他完全相同从袋子中任意摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之 和为8的概率是_14如图,在RtABC中,C

    5、=90,AB=5,BC=3,点P、Q分别在边BC、AC上,PQAB,把PCQ绕点P旋转得到PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分BAC,则CP的长为_15如图,A,B两点被池塘隔开,不能直接测量其距离于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AMAC,BNBC,测得MN200m,则A,B间的距离为_m16若关于x的方程(k1)x24x5=0有实数根,则k的取值范围是_17若顺次连接四边形ABCD四边中点所得的四边形是矩形,则原四边形的对角线AC、BD所满足的条件是_三、解答题(共7小题,满分69分)18(10分)如图,一次函数ykxb的图象与

    6、反比例函数y的图象交于点A(3,m8),B(n,6)两点求一次函数与反比例函数的解析式;求AOB的面积19(5分)定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”已知二次函数y=ax2-2mx+c(a,m,c均为常数且ac0)是“完美抛物线”:(1)试判断ac的符号;(2)若c=-1,该二次函数图象与y轴交于点C,且SABC=1求a的值;当该二次函数图象与端点为M(-1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围20(8分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(1,0)B(3,0)两点,与y轴交于点C求抛物线y=ax2+2x+

    7、c的解析式:;点D为抛物线上对称轴右侧、x轴上方一点,DEx轴于点E,DFAC交抛物线对称轴于点F,求DE+DF的最大值;在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;点Q在抛物线对称轴上,其纵坐标为t,请直接写出ACQ为锐角三角形时t的取值范围21(10分)填空并解答:某单位开设了一个窗口办理业务,并按顾客“先到达,先办理”的方式服务,该窗口每2分钟服务一位顾客已知早上8:00上班窗口开始工作时,已经有6位顾客在等待,在窗口工作1分钟后,又有一位“新顾客”到达,且以后每5分钟就有一位“新顾客”到达该

    8、单位上午8:00上班,中午11:30下班(1)问哪一位“新顾客”是第一个不需要排队的?分析:可设原有的6为顾客分别为a1、a2、a3、a4、a5、a6,“新顾客”为c1、c2、c3、c4窗口开始工作记为0时刻a1a2a3a4a5a6c1c2c3c4到达窗口时刻000000161116服务开始时刻024681012141618每人服务时长2222222222服务结束时刻2468101214161820根据上述表格,则第 位,“新顾客”是第一个不需要排队的(2)若其他条件不变,若窗口每a分钟办理一个客户(a为正整数),则当a最小取什么值时,窗口排队现象不可能消失分析:第n个“新顾客”到达窗口时刻为

    9、 ,第(n1)个“新顾客”服务结束的时刻为 22(10分)如图,已知点A(2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点(1)求抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标23(12分)观察下列算式: 1 3 - 22 = 3 - 4 = -1 2 4 - 32 = 8 - 9 = -13 5 - 42 = 15 - 16 = -1 (1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3

    10、)你认为(2)中所写出的式子一定成立吗?并说明理由24(14分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担李明按照相关政策投资销售本市生产的一种新型节能灯已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元如果李明想要每月获得的利润不低于元,那么政

    11、府为他承担的总差价最少为多少元?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题【详解】由图象可得,出租车的速度为:6006=100千米/时,故(1)正确,客车的速度为:60010=60千米/时,故(2)正确,两车相遇时,客车行驶时间为:600(100+60)=3.75(小时),故(3)正确,相遇时,出租车离甲地的路程为:603.75=225千米,故(4)正确,故选D本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答2、D【解析】设分配x名工人生产螺栓,则(27-x)人生

    12、产螺母,根据一个螺栓要配两个螺母可得方程222x=16(27-x),故选D.3、D【解析】根据“左加右减、上加下减”的原则,将抛物线向左平移1个单位所得直线解析式为:;再向下平移3个单位为:故选D4、C【解析】根据二次根式有意义的条件可得a0,原式变形为(a),然后利用二次根式的性质得到,再把根号内化简即可【详解】解:0,a0,原式(a),故选C本题考查的是二次根式的化简,主要是判断根号有意义的条件,然后确定值的范围再进行化简,是常考题型5、D【解析】分析:根据题意得出a和b的正负性,从而得出点B所在的象限详解:点A在第三象限, a0,b0, 即a0,b0, 点B在第四象限,故选D点睛:本题主

    13、要考查的是象限中点的坐标特点,属于基础题型明确各象限中点的横纵坐标的正负性是解题的关键6、D【解析】本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.【详解】要想得到平面图形(4),需要注意(4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片的边平行,所以D是正确答案,故本题正确答案为D选项.本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.7、C【解析】连接AD,由于ABC是等腰三角形,点D是BC边的中点,故ADBC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM

    14、+MD的最小值,由此即可得出结论【详解】如图,连接ADABC是等腰三角形,点D是BC边的中点,ADBC,SABC=BCAD=4AD=12,解得:AD=6(cm)EF是线段AB的垂直平分线,点B关于直线EF的对称点为点A,AD的长为BM+MD的最小值,BDM的周长最短=(BM+MD)+BD=AD+BC=6+4=6+2=8(cm)故选C本题考查的是轴对称最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键8、B【解析】由圆周角定理即可解答.【详解】ABC是O的内接三角形,A BOC,而BOC120,A60.故选B本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键.9、D【解析】分析:直

    15、接利用三角形外角的性质以及邻补角的关系得出B以及ODC度数,再利用圆周角定理以及三角形内角和定理得出答案详解:A=60,ADC=85,B=85-60=25,CDO=95,AOC=2B=50,C=180-95-50=35故选D点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出AOC度数是解题关键10、B【解析】试题分析:第一个图形的小圆数量=12+2=4;第二个图形的小圆数量=23+2=8;第三个图形的小圆数量=34+2=14;则第n个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=78+2=58个.考点:规律题二、填空题(共7小题,每小题3分,满分21分)11、1【

    16、解析】试题解析:袋中装有6个黑球和n个白球,袋中一共有球(6+n)个,从中任摸一个球,恰好是黑球的概率为,解得:n=1故答案为112、【解析】根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.【详解】由题意得:2-x0,解得:x2,故答案为x2.13、【解析】根据题意列出表格或树状图即可解答【详解】解:根据题意画出树状图如下:总共有9种情况,其中两个数字之和为8的有2种情况,故答案为:本题考查了概率的求解,解题的关键是画出树状图或列出表格,并熟记概率的计算公式14、1【解析】连接AD,根据PQAB可知ADQ=DAB,再由点D在BAC的平分线上,得出DAQ=DAB,故AD

    17、Q=DAQ,AQ=DQ在RtCPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.【详解】连接AD,PQAB,ADQ=DAB,点D在BAC的平分线上,DAQ=DAB,ADQ=DAQ,AQ=DQ,在RtABC中,AB=5,BC=3,AC=4,PQAB,CPQCBA,CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在RtCPQ中,PQ=5x,PD=PC=3x,DQ=1x,AQ=4-4x,4-4x=1x,解得x=,CP=3x=1;故答案为:1本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中

    18、考常考题型15、1【解析】AM=AC,BN=BC,AB是ABC的中位线,AB=MN=1m,故答案为116、【解析】当k1=0,即k=1时,原方程为4x5=0,解得:x=,k=1符合题意;当k10,即k1时,有,解得:k且k1.综上可得:k的取值范围为k.故答案为k.17、ACBD【解析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到FEH=90,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到EMO=90,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到AOD=90,根据垂直定义

    19、得到AC与BD垂直【详解】四边形EFGH是矩形,FEH=90,又点E、F、分别是AD、AB、各边的中点,EF是三角形ABD的中位线,EFBD,FEH=OMH=90,又点E、H分别是AD、CD各边的中点,EH是三角形ACD的中位线,EHAC,OMH=COB=90,即ACBD故答案为:ACBD此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质根据题意画出图形并熟练掌握矩形性质及三角形中位线定理是解题关键.三、解答题(共7小题,满分69分)18、(1)y=-,y=-2x-1(2)1【解析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标

    20、代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据SAOB=SAOC+SBOC列式计算即可得解试题解析:(1)将A(3,m+8)代入反比例函数y=得,=m+8,解得m=6,m+8=6+8=2,所以,点A的坐标为(3,2),反比例函数解析式为y=,将点B(n,6)代入y=得,=6,解得n=1,所以,点B的坐标为(1,6),将点A(3,2),B(1,6)代入y=kx+b得,解得,所以,一次函数解析式为y=2x1;(2)设AB与x轴相交于点C,令2x1=0解得x=2,所以,

    21、点C的坐标为(2,0),所以,OC=2,SAOB=SAOC+SBOC,=23+21,=3+1,=1考点:反比例函数与一次函数的交点问题19、 (1) ac3;(3)a=1;m或m【解析】(1)设A(p,q)则B(-p,-q),把A、B坐标代入解析式可得方程组即可得到结论;(3)由c=-1,得到p3,a3,且C(3,-1),求得p,根据三角形的面积公式列方程即可得到结果;由可知:抛物线解析式为y=x3-3mx-1,根据M(-1,1)、N(3,4)得到这些MN的解析式yx+(-1x3),联立方程组得到x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1x3内只有一个解,建立新的

    22、二次函数:y=x3-(3m+)x-,根据题意得到()若-1x13且x33,()若x1-1且-1x33:列方程组即可得到结论【详解】(1)设A(p,q)则B(-p,-q),把A、B坐标代入解析式可得:,3ap3+3c=3即p3,3,ac3,3,ac3;(3)c=-1,p3,a3,且C(3,-1),p,SABC=31=1,a=1;由可知:抛物线解析式为y=x3-3mx-1,M(-1,1)、N(3,4)MN:yx+(-1x3),依题,只需联立在-1x3内只有一个解即可,x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1x3内只有一个解,建立新的二次函数:y=x3-(3m+)x-

    23、,=(3m+)3+113且c=-3,抛物线yx3(3m+)x与x轴有两个交点,且交y轴于负半轴不妨设方程x3(3m+)x3的两根分别为x1,x3(x1x3)则x1+x33m+,x1x3方程x3(3m+)x3在-1x3内只有一个解故分两种情况讨论:()若-1x13且x33:则即:,可得:m()若x1-1且-1x33:则即:,可得:m,综上所述,m或m本题考查了待定系数法求二次函数的解析式,一元二次方程根与系数的关系,三角形面积公式,正确的理解题意是解题的关键20、(1)y=x2+2x+3;(2)DE+DF有最大值为;(3)存在,P的坐标为(,)或(,);t【解析】(1)设抛物线解析式为y=a(x

    24、+1)(x3),根据系数的关系,即可解答(2)先求出当x=0时,C的坐标,设直线AC的解析式为y=px+q,把A,C的坐标代入即可求出AC的解析式,过D作DG垂直抛物线对称轴于点G,设D(x,x2+2x+3),得出DE+DF=x2+2x+3+(x-1)=x2+(2+)x+3-,即可解答(3)过点C作AC的垂线交抛物线于另一点P1,求出直线PC的解析式,再结合抛物线的解析式可求出P1,过点A作AC的垂线交抛物线于另一点P2,再利用A的坐标求出P2,即可解答观察函数图象与ACQ为锐角三角形时的情况,即可解答【详解】解:(1)设抛物线解析式为y=a(x+1)(x3),即y=ax22ax3a,2a=2

    25、,解得a=1,抛物线解析式为y=x2+2x+3;(2)当x=0时,y=x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(1,0),C(0,3)代入得,解得,直线AC的解析式为y=3x+3,如答图1,过D作DG垂直抛物线对称轴于点G,设D(x,x2+2x+3),DFAC,DFG=ACO,易知抛物线对称轴为x=1,DG=x-1,DF=(x-1),DE+DF=x2+2x+3+(x-1)=x2+(2+)x+3-,当x=,DE+DF有最大值为; 答图1 答图2(3)存在;如答图2,过点C作AC的垂线交抛物线于另一点P1,直线AC的解析式为y=3x+3,直线PC的解析式可设为y=

    26、x+m,把C(0,3)代入得m=3,直线P1C的解析式为y=x+3,解方程组,解得或,则此时P1点坐标为(,);过点A作AC的垂线交抛物线于另一点P2,直线AP2的解析式可设为y=x+n,把A(1,0)代入得n=,直线PC的解析式为y=,解方程组,解得或,则此时P2点坐标为(,),综上所述,符合条件的点P的坐标为(,)或(,);t此题考查二次函数综合题,解题关键在于把已知点代入解析式求值和作辅助线.21、(1)5;(2)5n4,na+6a【解析】(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;(2)由表格中信息可得,“

    27、新顾客”到达时间为1,6,11,16,则第n个“新顾客”到达窗口时刻为5n4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,第n1个“新顾客”服务开始的时间为(6+n1)a=(5+n)a,第n1个“新顾客”服务结束的时间为(5+n)a+a=na+6a【详解】(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;故答案为:5;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,第n个“新顾客”到达窗口时刻为5n4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,第n个“新顾客”服务开始的时间为(6

    28、+n)a,第n1个“新顾客”服务开始的时间为(6+n1)a=(5+n)a,每a分钟办理一个客户,第n1个“新顾客”服务结束的时间为(5+n)a+a=na+6a,故答案为:5n4,na+6a本题考查了列代数式,用代数式表示数的规律,解题关键是要读懂题目的意思,根据题目给出的条件,寻找规律,列出代数式22、(1)y=x2+x+3;D(1,);(2)P(3,)【解析】(1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;(2)画图,先根据点B和C的坐标确定直线BC的解析式,设P(m,-m2+m+3),则F(m,-

    29、m+3),表示PF的长,根据四边形DEFP为平行四边形,由DE=PF列方程可得m的值,从而得P的坐标【详解】解:(1)设抛物线的解析式为y=a(x+2)(x4),将点C(0,3)代入得:8a=3,解得:a=,y=x2+x+3=(x1)2+,抛物线的解析式为y=x2+x+3,且顶点D(1,);(2)B(4,0),C(0,3),BC的解析式为:y=x+3,D(1,),当x=1时,y=+3=,E(1,),DE=-=,设P(m,m2+m+3),则F(m,m+3),四边形DEFP是平行四边形,且DEFP,DE=FP,即(m2+m+3)(m+3)=,解得:m1=1(舍),m2=3,P(3,)本题主要考查的

    30、是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中23、;答案不唯一.如; .【解析】(1)根据的算式中,变与不变的部分,找出规律,写出新的算式;(2)将(1)中,发现的规律,由特殊到一般,得出结论;(3)一定成立利用整式的混合运算方法加以证明24、(1)政府这个月为他承担的总差价为644元;(2)当销售单价定为34元时,每月可获得最大利润144元;(3)销售单价定为25元时,政府每个月为他承担的总差价最少为544元【解析】试题分析:(1)把x=24代入y=14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差

    31、价;(2)由利润=销售价成本价,得w=(x14)(14x+544),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令14x2+644x5444=2,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值试题解析:(1)当x=24时,y=14x+544=1424+544=344,344(1214)=3442=644元,即政府这个月为他承担的总差价为644元;(2)依题意得,w=(x14)(14x+544)=14x2+644x5444=14(x34)2+144a=144,当x=34时,w有最大值144元即当销售单价定为34元时,每月可获得最大利润144元;(3)由题意得:14x2+644x5444=2,解得:x1=24,x2=1a=144,抛物线开口向下,结合图象可知:当24x1时,w2又x25,当24x25时,w2设政府每个月为他承担的总差价为p元,p=(1214)(14x+544)=24x+3k=244p随x的增大而减小,当x=25时,p有最小值544元即销售单价定为25元时,政府每个月为他承担的总差价最少为544元考点:二次函数的应用

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2024-2025学年广东省华师附中初三数学试题中考冲刺七含解析.doc
    链接地址:https://www.163wenku.com/p-8142480.html
    知识图书馆
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库