书签 分享 收藏 举报 版权申诉 / 15
上传文档赚钱

类型2017年山东省莱芜市中考数学试卷-详细答案解析.docx

  • 上传人(卖家):mrliu
  • 文档编号:8139
  • 上传时间:2018-06-11
  • 格式:DOCX
  • 页数:15
  • 大小:1.10MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2017年山东省莱芜市中考数学试卷-详细答案解析.docx》由用户(mrliu)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2017 山东省 莱芜市 中考 数学试卷 详细 答案 解析 下载 _中考真题_中考复习_数学_初中
    资源描述:

    1、山东省莱芜市 2017 年初中学业水平考试 数学 答案 解析 第 卷 一、选择题 1.【答案】 A 【解析】 解: 6? 的倒数是 16? , 故选: A 【提示】乘积是 1 的两数互为倒数 【考点】 倒数 的定义 2.【答案】 A 【解析】 解:数 0.00000078 用科学记数法表示为 77.8 10? , 故选 A 【提示】绝对值 1? 的正数也可以利用科学记数法表示,一般形式为 10na ? ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的 0 的个数所决定 【考点】 科学 计数法 3.【答案】 C 【解析】 解: A原式 2x? ,不符合

    2、题意; B原式 3x? ,不符合题意; C原式 54x? ,符合题意; D原式 249xy? ,不符合题意,故选 C 【提示】各项计算得到结果,即可作出判断 【考点】 整式的运算 4.【答案】 B 【解析】 解:设自行车的平均速度为 x千 米 /小 时 ,则电动车的平均速度为 ( 25)x? 千 米 /小 时 ,由自行车行驶 30 千米比电动车行驶 40 千米多用了 1 小时,可列方程30 401 25xx?,故选 B 【提示】根据电动车每小时比自行车多行驶了 25 千米,可用 x 表示出电动车的速度,再由自行车行驶 30千米比电动车行驶 40 千米多用了 1 小时,可列出方程 【考点】分式

    3、方程的应用 5.【答案】 C 【解析】 解:根据左视图的定义,从左边观察得到的图形,是选项 C故选 C 【提示】根据左视图的定义,画出左视图即可判断 【考点】几何体 的三视图 6.【答案】 C 【解析】 解: OB OC? , 21B BCO? ? ? ?, 2 1 2 1 4 2A O D B B C O? ? ? ? ? ? ? ? ? ? ?, AB 是 O的直径,直线 DA 与 O 相切与点 A, 90OAD? ? ? , 9 0 9 0 4 2 4 8A D C A O D? ? ? ? ? ? ? ? ? ? ?, 故选 C 【提示】根据等边对等角可得 B BCO? ? ,再根据三

    4、角形的一个外角等于与它不相邻的两个内角的和可得A O D B B C O? ? ? ? ?,根据切线的性质可得 90OAD? ? ? ,然后根据直角三角形两锐角互余求解即可 【考点】切线 的性质 、 圆周角 定理 及 直角 三角形 的 两个锐角 互余 的性质 7.【答案】 C 【解析】 解:根据题意,得 ( 2 ) 1 8 0 3 6 0 2 1 8 0n ? ? ? ? ?,解得: 7n? 则这个多边形的边数是 7,七边形的对角线条数为7 (7 3) 142?,故选 C 【提示】多边形的内角和比外角和的 2 倍多 180? ,而多边形的外角和是 360? ,则内角和是 900 度, n 边形

    5、的内角和可以表示成 ( 2)180n?,设这个多边形的边数是 n,就得到方程,从而求出边数,进而求出对角线的条数 【考点】 多边形 的内角 与 外 角 和 及 对 角线条数 的 求法 8.【答案】 D 【解析】 解:在 Rt ABC 中, 90BCA? ? ? , 30BAC? ? ? , 2BC? , 23AC? , 4AB? , 将 Rt ABC绕点 A 逆时针旋转 90? 得 到 Rt ADE , ABC 的面积等于 ADE 的面积, CAB DAE? ? ,23AE AC?, 4AD AB?, 90C A E D A B? ? ? ? ?, 阴影部分的面积 90 ( 2 3 ) 1 2

    6、 2 3 3 6 0 2B A D A B C C A E A D ES S S S S? ? ? ? ? ? ? ?扇 形 形 扇 故选 D 【提示】解直角三角形得到 AC, AB,根据旋转推出 ABC 的面积等于 ADE 的面积,根据扇形和三角形的面积公式即可得到结论 【考点】 旋转性质 的 运 用 , 全等三角形的 性质及 扇形 面积 公式 的 运用 9.【答案】 A 【解析】 解:如图,连接 DP, BD,作 DH BC? 于 H 四边形 ABCD 是菱形, AC BD? , B、 D 关于 AC 对称, P B P M P D P M? ? ?, 当 D、 P、 M 共线时, P B

    7、 P M DM?的值最小, 1 23CM BC?, 120ABC? ? ? , 60D B C A B D? ? ? ? ?, DBC是 等 边 三 角 形 , 6BC? , 2CM? , 1HM? , 33DH? ,在 Rt DMH 中,2 2 2 2( 3 3 ) 1 2 7D M D H H M? ? ? ? ?, CM AD , 2163P M C MD P AD? ? ? ?, 1742P M DM? ? 故选 A 【提示】如图,连接 DP, BD,作 DH BC? 于 H, 当 D、 P、 M 共线时, P B P M DM?的值最小,利用勾股定理求出 DM,再利用平行线的性质即可

    8、解决问题 【考点】 菱形 的性质, 勾股定理 及 最短 路径问题 10.【答案】 B 【解析】 解:过点 Q 做 QM AB? 于点 M 当点 Q 在线段 AD 上时,如图 1 所示, (0 5)A P A Q t t? ? ? ?, 1sin 3A? , 13QM t? , 21126s AP Q M t?; 当点 Q 在线段 CD 上时,如图 2 所示, (5 8)AP t t? ? ? , 5sin 3QM AD A?, 1526s AP QM t?; 当点 Q在线段 CB上时,如图 3所示, 2 0 2833A P t t? ? ? ?(利用解直角三角形求出 20 2 33AB ?),

    9、5 3 5 13BQ t t? ? ? ? ? ?, 1sin 3B? , 1 (13 )3QM t?, 211( 1 3 )26s A P Q M t t? ? ? ?, 21 ( 3 )6s t t?的对称轴为直线 132x? , 综上观察函数图象可知 B 选项中的图象符合题意 故选 B 【提示】过点 Q 做 QM AB? 于点 M,分点 Q 在线段 AD、 DC、 CB 上三种情况考虑,根据三角形的面积公式找出 s 关于 t 的函数关系式,再结合四个选项即可得出结论 【考点】 锐角 三角函数的应用,一次函数、二次函数的图像和性质的运用 11.【答案】 D 【解析】 解:由题意得:213y

    10、xyx? ? ?,解得:4353xy? ? ?,当 2 1 3xx? ? ? 时, 43x? , 当 43x? 时,m i n 2 1 , 33y x x x? ? ? ? ? ? ?,由图象可知:此时该函数的最大值为53; 当 2 1 3xx? ? ? 时, 43x? , 当 43x? 时, m in 2 1, 3 2 1y x x x? ? ? ? ? ?,由图象可知:此时该函数的最大值为53; 综上所述, m in 2 1 3,y x x? ? ? ?的最大值是当 43x? 所对应的 y 的值,如图所示,当 43x? 时 53y? ,故选D 【提示】根据定义先列不等式: 2 1 3xx?

    11、 ? ? 和 2 1 3xx? ? ? ,确定其 m in 2 1 3,y x x? ? ? ?对应的函数,画图象可知其最大值 【考点】 新定义 题型,一次函数的图像与性质 12.【答案】 B 【解析】 解: 五方形 ABCDE 是正五边形, AB BC? , 3601 8 0 1 0 85ABC ? ? ? ? ? ?, 36B A C A C B? ? ? ? ?, 1 0 8 3 6 7 2A C D? ? ? ? ? ? ?,同理得: 36ADE? ? ? , 108BAE? ? ? , AB AE? , 36ABE? ? ? , 1 0 8 3 6 7 2C B F? ? ? ? ?

    12、 ? ?, BC FC? , BC CD? , CD CF? , 1 8 0 7 2 542C D F C F D ? ? ? ? ? ? ? ?, 1 0 8 5 4 3 6 1 8F D G C D E C D F A D E? ? ? ? ? ? ? ? ? ? ? ? ? ? ?; 所以 正确; 36A B E A C B? ? ? ? ?, BAC BAF? ? , ABF ACB , AB ECAC ED?, AB ED AC EG? , 2AB ED?, 24A C B E B G E F F G A B F G F G? ? ? ? ? ? ? ?, 2E G B G F G

    13、F G? ? ? ?, 2 (2 )(4 )2 F G F G? ? ?, 3 5 2FG ? ? ? (舍), 35FG? ; 所以 正确; 如图 1, 72EBC? ? ? , 108BCD? ? ? , 180E B C B C D? ? ? ? ?, EF CD , 2EF CD?, 四边形 CDEF 是平行四边形,过 D 作 DM EG? 于 M, DG DE? , 1 1 1 5 1( ) ( 2 3 5 )2 2 2 2E M M G E G E F F G ? ? ? ? ? ? ? ?,由勾股定理得: 22 2 2 5 1 1 0 2 52 24D M D E E M ? ?

    14、 ? ? ?, 2 2 2 1 0 2 5( 4 1) 0 2 54C D E FS E F D M ? ? ? ? ?四 边 形; 所以 不正确; 如图 2,连接 EC, EF ED? , CDEF 是菱形, FD EC? , 4 4 ( 3 5 ) 1 5E C B E F G? ? ? ? ? ? ? ?, 1 1 0 2 5224C D E FS F D E C ? ? ?四 边 形, 1 (1 5 ) 1 0 2 52 FD? ? ? ? ?, 2 10 2 5FD ? , 22 1 0 2 5 4 6 2 5D F D G ? ? ? ? ? ,所以 不正确; 本题正确的有两个,故

    15、选 B 【提示】 先根据正五方形 ABCDE 的性质得: 3601 8 0 1 0 85ABC ? ? ? ? ? ?,由等边对等角可得:36B A C A C B? ? ? ? ?,再利用角相等求 BC CF CD?,得 1 8 0 7 2 542C D F C F D ? ? ? ? ? ? ? ?,可得18FDG? ? ? ; 证明 ABF ACB ,得AB EGAC ED?,代入可得 FG 的长; 如图 1 ,先证明四边形 CDEF 是平行四边形,根据平行四边形的面积公式可得:2 2 2 1 0 2 5( 4 1) 0 2 54C D E FS E F D M ? ? ? ? ?四 边

    16、 形 ; 如图 2, CDEF 是菱形,先计算 4 1 5E C B E F G? ? ? ? ?,由 1 0 2 524C D E FS F D E C ? ? ?四 边 形,可得 2 10 2 5FD ? ,计算可得结论 【考点】 正五边形的 性质 ,相似 的判定 和 性质, 勾股定理 第 卷 二、填空题 13.【答案】 72? 【解析】 解: 8 2 1 2 2 7 2? ? ? ? ? ? ? ?原 式 ,故答案为: 72? 【提示】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果 【考点】 负指数 幂 、零指数幂 的运算,二次根式的 化简 , 特殊角的 三角

    17、 函数值 14.【答案】 1 【解析】 解:如图,连接 AA, 底面周长为23, 弧长 23180 3n ?, 60n?即 60AOA? ? ? , OA OA? AOA? 是等边三角形, 2AA? , PP是 OAA? 的中位线, 1 12PP AA?,故答案是: 1 【提示】连接 AA,根据弧长公式可得出圆心角的度数,可知 OAA是等边三角形,再求出 PP即可 【考点】 圆锥 的侧面展开图,扇形的 弧长 计算,量短路径 的 计算 15.【答案】 16 【解析】 解:由题意 ( 3,2)A? , (1, 6)B ? , 直线 y kx b?经过点 ( 3,2)A? , (1, 6)B ? ,

    18、 326kbkb? ? ? ? ?,解得 24kb?, 24yx? ? ,向上平移 8 个单位得到直线 24yx? ? ,由624y xyx? ? ? ?,解得32xy? ?和16xy? ?,不妨设 (3, 2)D ? , ( 1,6)E? , 1 1 16 8 4 2 6 4 8 4 1 62 2 2A D ES ? ? ? ? ? ? ? ? ? ? ? ?,故答案为 16 【提示】利用待定系数法求出平移后的直线的解析式,求出点 D、 E 的坐标,再利用分割法求出三角形的面积即可 【考点】 待定系数法求 函数的解析式 , 函数交点坐标及在平面 直角 坐标系中 求 三角形的面积 16.【答案】 【解析】

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2017年山东省莱芜市中考数学试卷-详细答案解析.docx
    链接地址:https://www.163wenku.com/p-8139.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库