书签 分享 收藏 举报 版权申诉 / 21
上传文档赚钱

类型2023届甘肃省兰州市五十一中高考数学一模试卷含解析.doc

  • 上传人(卖家):知识图书馆
  • 文档编号:8124952
  • 上传时间:2024-12-04
  • 格式:DOC
  • 页数:21
  • 大小:1.81MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2023届甘肃省兰州市五十一中高考数学一模试卷含解析.doc》由用户(知识图书馆)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2023 甘肃省 兰州市 五十 一中 高考 数学 试卷 解析 下载 _考试试卷_数学_高中
    资源描述:

    1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

    2、1已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为( )ABCD2一辆邮车从地往地运送邮件,沿途共有地,依次记为,(为地,为地)从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达,各地装卸完毕后剩余的邮件数记为则的表达式为( )ABCD3已知复数满足,则( )ABCD4已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是( )ABCD5在四面体中,为正三角形,边长为6,则四面体的体积为( )ABC24D6执行如图所示的程序框图,则输出的的值是( )A8B32C64

    3、D1287执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为( )ABCD8在中,角的对边分别为,若,则的形状为( )A直角三角形B等腰非等边三角形C等腰或直角三角形D钝角三角形9为得到的图象,只需要将的图象( )A向左平移个单位 B向左平移个单位C向右平移个单位 D向右平移个单位10设等差数列的前n项和为,且,则( )A9B12CD11在平面直角坐标系中,若不等式组所表示的平面区域内存在点,使不等式成立,则实数的取值范围为( )ABCD12已知函数,若曲线上始终存在两点,使得,且的中点在轴上,则正实数的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。1

    4、3在的展开式中,的系数为_用数字作答14已知关于的不等式对于任意恒成立,则实数的取值范围为_15已知,圆,直线PM,PN分别与圆O相切,切点为M,N,若,则的最小值为_.16已知函数,若恒成立,则的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)求不等式的解集;(2)若正数、满足,求证:.18(12分)已知椭圆的焦点为,离心率为,点P为椭圆C上一动点,且的面积最大值为,O为坐标原点.(1)求椭圆C的方程;(2)设点,为椭圆C上的两个动点,当为多少时,点O到直线MN的距离为定值.19(12分)已知是递增的等差数列,是方程的根.(1)求的通

    5、项公式;(2)求数列的前项和.20(12分)已知函数,.(1)当时,求函数的值域;(2),求实数的取值范围.21(12分)如图,正方形是某城市的一个区域的示意图,阴影部分为街道,各相邻的两红绿灯之间的距离相等,处为红绿灯路口,红绿灯统一设置如下:先直行绿灯30秒,再左转绿灯30秒,然后是红灯1分钟,右转不受红绿灯影响,这样独立的循环运行.小明上学需沿街道从处骑行到处(不考虑处的红绿灯),出发时的两条路线()等可能选择,且总是走最近路线.(1)请问小明上学的路线有多少种不同可能?(2)在保证通过红绿灯路口用时最短的前提下,小明优先直行,求小明骑行途中恰好经过处,且全程不等红绿灯的概率;(3)请你

    6、根据每条可能的路线中等红绿灯的次数的均值,为小明设计一条最佳的上学路线,且应尽量避开哪条路线?22(10分)已知均为正实数,函数的最小值为.证明:(1);(2).参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.【详解】抛物线的焦点为,则,即,设点的坐标为,点的坐标为,如图:,解得,或(舍去),直线的方程为,设直线与抛物线的另一个交点为,由,解得或,故直线被截得的弦长为故选:B【点睛】本题主要考查了抛物线的标准方程,简

    7、单几何性质,点关于直线对称,属于中档题.2、D【解析】根据题意,分析该邮车到第站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案【详解】解:根据题意,该邮车到第站时,一共装上了件邮件,需要卸下件邮件,则,故选:D【点睛】本题主要考查数列递推公式的应用,属于中档题3、A【解析】由复数的运算法则计算【详解】因为,所以故选:A【点睛】本题考查复数的运算属于简单题4、A【解析】先根据奇函数求出m的值,然后结合单调性求解不等式.【详解】据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.【点睛】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.5、

    8、A【解析】推导出,分别取的中点,连结,则,推导出,从而,进而四面体的体积为,由此能求出结果.【详解】解: 在四面体中,为等边三角形,边长为6,分别取的中点,连结,则,且,平面,平面,四面体的体积为:.故答案为:.【点睛】本题考查四面体体积的求法,考查空间中线线,线面,面面间的位置关系等基础知识,考查运算求解能力.6、C【解析】根据给定的程序框图,逐次计算,结合判断条件,即可求解.【详解】由题意,执行上述程序框图,可得第1次循环,满足判断条件,;第2次循环,满足判断条件,;第3次循环,满足判断条件,;第4次循环,满足判断条件,;不满足判断条件,输出.故选:C.【点睛】本题主要考查了循环结构的程序

    9、框图的计算与输出,其中解答中认真审题,逐次计算,结合判断条件求解是解答的关键,着重考查了推理与运算能力,属于基础题.7、B【解析】根据程序框图知当时,循环终止,此时,即可得答案.【详解】,.运行第一次,不成立,运行第二次,不成立,运行第三次,不成立,运行第四次,不成立,运行第五次,成立,输出i的值为11,结束.故选:B.【点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.8、C【解析】利用正弦定理将边化角,再由,化简可得,最后分类讨论可得;【详解】解:因为所以所以所以所以所以当时,为直角三角形;

    10、当时即,为等腰三角形;的形状是等腰三角形或直角三角形故选:【点睛】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题9、D【解析】试题分析:因为,所以为得到的图象,只需要将的图象向右平移个单位;故选D考点:三角函数的图像变换10、A【解析】由,可得以及,而,代入即可得到答案.【详解】设公差为d,则解得,所以.故选:A.【点睛】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.11、B【解析】依据线性约束条件画出可行域,目标函数恒过,再分别讨论的正负进一步确定目标函数与可行域的基本关系,即可求解【详解】作出不等式对应的平面区域,如图所示:其中,直

    11、线过定点,当时,不等式表示直线及其左边的区域,不满足题意;当时,直线的斜率,不等式表示直线下方的区域,不满足题意;当时,直线的斜率,不等式表示直线上方的区域,要使不等式组所表示的平面区域内存在点,使不等式成立,只需直线的斜率,解得.综上可得实数的取值范围为,故选:B.【点睛】本题考查由目标函数有解求解参数取值范围问题,分类讨论与数形结合思想,属于中档题12、D【解析】根据中点在轴上,设出两点的坐标,().对分成三类,利用则,列方程,化简后求得,利用导数求得的值域,由此求得的取值范围.【详解】根据条件可知,两点的横坐标互为相反数,不妨设,(),若,则,由,所以,即,方程无解;若,显然不满足;若,

    12、则,由,即,即,因为,所以函数在上递减,在上递增,故在处取得极小值也即是最小值,所以函数在上的值域为,故.故选D.【点睛】本小题主要考查平面平面向量数量积为零的坐标表示,考查化归与转化的数学思想方法,考查利用导数研究函数的最小值,考查分析与运算能力,属于较难的题目.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】利用二项展开式的通项公式求出展开式的通项,令,求出展开式中的系数【详解】二项展开式的通项为 令得的系数为 故答案为1【点睛】利用二项展开式的通项公式是解决二项展开式的特定项问题的工具14、【解析】先将不等式对于任意恒成立,转化为任意恒成立,设,求出在内的最小值,即可求出

    13、的取值范围.【详解】解:由题可知,不等式对于任意恒成立,即,又因为,对任意恒成立,设,其中,由不等式,可得:,则,当时等号成立,又因为在内有解,则,即:,所以实数的取值范围:.故答案为:.【点睛】本题考查不等式恒成立问题,利用分离参数法和构造函数,通过求新函数的最值求出参数范围,考查转化思想和计算能力.15、【解析】由可知R为中点,设,由过切点的切线方程即可求得,,代入,则在直线上,即可得方程为,将 ,代入化简可得,则直线过定点,由则点在以为直径的圆上,则.即可求得.【详解】如图,由可知R为MN的中点,所以,设,则切线PM的方程为,即,同理可得,因为PM,PN都过,所以,所以在直线上,从而直线

    14、MN方程为,因为,所以,即直线MN方程为,所以直线MN过定点,所以R在以OQ为直径的圆上,所以.故答案为: .【点睛】本题考查直线和圆的位置关系,考查圆的切线方程,定点和圆上动点距离的最值问题,考查学生的数形结合能力和计算能力,难度较难.16、【解析】求导得到,讨论和两种情况,计算时,函数在上单调递减,故,不符合,排除,得到答案。【详解】因为,所以,因为,所以.当,即时,则在上单调递增,从而,故符合题意;当,即时,因为在上单调递增,且,所以存在唯一的,使得.令,得,则在上单调递减,从而,故不符合题意.综上,的取值范围是.故答案为:.【点睛】本题考查了不等式恒成立问题,转化为函数的最值问题是解题

    15、的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】(1)等价于()或()或(),分别解出,再求并集即可;(2)利用基本不等式及可得,代入可得最值.【详解】(1)等价于()或()或()由()得:由()得:由()得:.原不等式的解集为;(2),当且仅当,即时取等号,当且仅当即时取等号,.【点睛】本题考查分类讨论解绝对值不等式,考查三角不等式的应用及基本不等式的应用,是一道中档题.18、(1);(2)当0时,点O到直线MN的距离为定值.【解析】(1)的面积最大时,是短轴端点,由此可得,再由离心率及可得,从而得椭圆方程;(2)在直线斜率存在时,设其

    16、方程为,现椭圆方程联立消元()后应用韦达定理得,注意,一是计算,二是计算原点到直线的距离,两者比较可得结论【详解】(1)因为在椭圆上,当是短轴端点时,到轴距离最大,此时面积最大,所以,由,解得,所以椭圆方程为(2)在时,设直线方程为,原点到此直线的距离为,即,由,得,所以,所以当时,为常数若,则,综上所述,当0时,点O到直线MN的距离为定值.【点睛】本题考查求椭圆方程与椭圆的几何性质,考查直线与椭圆的位置关系,考查运算求解能力解题方法是“设而不求”法在直线与圆锥曲线相交时常用此法通过韦达定理联系已知式与待求式19、(1);(2).【解析】(1)方程的两根为,由题意得,在利用等差数列的通项公式即

    17、可得出;(2)利用“错位相减法”、等比数列的前项和公式即可求出【详解】方程x25x60的两根为2,3.由题意得a22,a43.设数列an的公差为d,则a4a22d,故d,从而得a1.所以an的通项公式为ann1.(2)设的前n项和为Sn,由(1)知,则Sn,Sn,两式相减得Sn,所以Sn2.考点:等差数列的性质;数列的求和【方法点晴】本题主要考查了等差数列的通项公式、“错位相减法”、等比数列的前项和公式、一元二次方程的解法等知识点的综合应用,解答中方程的两根为,由题意得,即可求解数列的通项公式,进而利用错位相减法求和是解答的关键,着重考查了学生的推理能力与运算能力,属于中档试题20、(1);(

    18、2).【解析】(1)将代入函数的解析式,将函数的及解析式变形为分段函数,利用二次函数的基本性质可求得函数的值域;(2)由参变量分离法得出在区间内有解,分和讨论,求得函数的最大值,即可得出实数的取值范围.【详解】(1)当时,.当时,;当时,.函数的值域为;(2)不等式等价于,即在区间内有解当时,此时,则;当时,函数在区间上单调递增,当时,则.综上,实数的取值范围是.【点睛】本题主要考查含绝对值函数的值域与含绝对值不等式有解的问题,利用绝对值的应用将函数转化为二次函数,结合二次函数的性质是解决本题的关键,考查分类讨论思想的应用,属于中等题.21、(1)6种;(2);(3).【解析】(1)从4条街中

    19、选择2条横街即可;(2)小明途中恰好经过处,共有4条路线,即,分别对4条路线进行分析计算概率;(3)分别对小明上学的6条路线进行分析求均值,均值越大的应避免.【详解】(1)路途中可以看成必须走过2条横街和2条竖街,即从4条街中选择2条横街即可,所以路线总数为条. (2)小明途中恰好经过处,共有4条路线:当走时,全程不等红绿灯的概率;当走时,全程不等红绿灯的概率;当走时,全程不等红绿灯的概率;当走时,全程不等红绿灯的概率.所以途中恰好经过处,且全程不等信号灯的概率.(3)设以下第条的路线等信号灯的次数为变量,则第一条:,则;第二条:,则;另外四条路线:;,则综上,小明上学的最佳路线为;应尽量避开.【点睛】本题考查概率在实际生活中的综合应用问题,考查学生逻辑推理与运算能力,是一道有一定难度的题.22、(1)证明见解析(2)证明见解析【解析】(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值,再运用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到结论,注意等号成立的条件.【详解】(1)由题意,则函数,又函数的最小值为,即,由柯西不等式得,当且仅当时取“=”.故.(2)由题意,利用基本不等式可得,(以上三式当且仅当时同时取“=”)由(1)知,所以,将以上三式相加得即.【点睛】本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算能力,属于中档题.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2023届甘肃省兰州市五十一中高考数学一模试卷含解析.doc
    链接地址:https://www.163wenku.com/p-8124952.html
    知识图书馆
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库