2024-2025学年安徽省滁州来安县初三下期中考试综合试题含解析.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2024-2025学年安徽省滁州来安县初三下期中考试综合试题含解析.doc》由用户(知识图书馆)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 2025 学年 安徽省 滁州 来安县 初三 期中考试 综合 试题 解析 下载 _考试试卷_数学_初中
- 资源描述:
-
1、2024-2025学年安徽省滁州来安县初三下期中考试综合试题注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必
2、须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列运算中正确的是( )Ax2x8=x6Baa2=a2C(a2)3=a5D(3a)3=9a32如图,若锐角ABC内接于O,点D在O外(与点C在AB同侧),则C与D的大小关系为()ACDBCDCC=DD无法确定3如图1,在矩形ABCD中,动点E从A出发,沿ABBC方向运动,当点E到达点C时停止运动,过点E做FEAE,交CD于F点,设点E运动路程为x,FCy,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形AB
3、CD的面积是()AB5C6D4下列运算正确的是()Aa2+a2=a4B(a+b)2=a2+b2Ca6a2=a3D(2a3)2=4a65在平面直角坐标系xOy中,若点P(3,4)在O内,则O的半径r的取值范围是( )A0r3Br4C0r5Dr56如图,矩形ABCD中,AB=3,AD=4,连接BD,DBC的角平分线BE交DC于点E,现把BCE绕点B逆时针旋转,记旋转后的BCE为BCE当线段BE和线段BC都与线段AD相交时,设交点分别为F,G若BFD为等腰三角形,则线段DG长为()ABCD7若关于x的方程 是一元二次方程,则m的取值范围是( )A.B.CD.8如
4、图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,1),C(2,1),D(1,1)以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,重复操作依次得到点P1,P2,则点P2010的坐标是()A(2010,2)B(2010,2)C(2012,2)D(0,2)9抛物线yx22x3的对称轴是( )A直线x1B直线x1C直线x2D直线x210如图,ABCD,FEDB,垂足为E,1=60,则2的度数是()A60B50C40D30二、填空题(共7小
5、题,每小题3分,满分21分)11已知ab=2,ab=3,则a3b2a2b2+ab3的值为_12如图,点G是的重心,AG的延长线交BC于点D,过点G作交AC于点E,如果,那么线段GE的长为_13甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_(填“甲”或“乙”)14如图,的半径为,点,都在上,将扇形绕点顺时针旋转后恰好与扇形重合,则的长为_(结果保留)15矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=1将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为_16
6、不等式组的解集为_17某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_ 甲乙丙丁 7887s211.20.91.8三、解答题(共7小题,满分69分)18(10分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元打折前甲、乙两种品牌粽
7、子每盒分别为多少元?阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?19(5分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区18001600B地区16001200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金
8、总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议20(8分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DEDB,求证:(1)BCEADE;(2)ABBC=BDBE21(10分)如图1,ABC与CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN(1)观察猜想:图1中,PM与PN的数量关系是 ,位置关系是 (2)探究证明:将图1中的C
9、DE绕着点C顺时针旋转(090),得到图2,AE与MP、BD分别交于点G、H,判断PMN的形状,并说明理由;(3)拓展延伸:把CDE绕点C任意旋转,若AC=4,CD=2,请直接写出PMN面积的最大值22(10分)如图1,抛物线y=ax2+bx2与x轴交于点A(1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2)(1)求该抛物线的解析式;(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;(3)如图3,连结AC,将AOC绕点O逆时针方向旋转,记旋转中的三角形为AOC,
10、在旋转过程中,直线OC与直线BE交于点Q,若BOQ为等腰三角形,请直接写出点Q的坐标23(12分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B求抛物线的解析式;判断ABC的形状,并说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若SOPA=2SOQA,试求出点P的坐标24(14分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180,得到新的抛物线C(1)求抛物线C的函数表达式;(2)若抛物线C与抛物线
11、C在y轴的右侧有两个不同的公共点,求m的取值范围(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C上的对应点P,设M是C上的动点,N是C上的动点,试探究四边形PMPN能否成为正方形?若能,求出m的值;若不能,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可【详解】解:A、x2x8=x-6,故该选项正确;B、aa2=a3,故该选
12、项错误;C、(a2)3=a6,故该选项错误;D、(3a)3=27a3,故该选项错误;故选A此题主要考查了同底数幂的乘除法、幂的乘方和积的乘方,关键是掌握相关运算法则2、A【解析】直接利用圆周角定理结合三角形的外角的性质即可得.【详解】连接BE,如图所示:ACB=AEB,AEBD,CD故选:A考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键3、B【解析】易证CFEBEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题【详解】若点E在BC上时,如图EFC+AEB90,FEC+EFC90,CFEAEB,在CFE和BEA中,CFEBEA,由二次函数图象对称性
13、可得E在BC中点时,CF有最大值,此时,BECEx,即,当y时,代入方程式解得:x1(舍去),x2,BECE1,BC2,AB,矩形ABCD的面积为25;故选B本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键4、D【解析】根据完全平方公式、合并同类项、同底数幂的除法、积的乘方,即可解答【详解】A、a2+a2=2a2,故错误;B、(a+b)2=a2+2ab+b2,故错误;C、a6a2=a4,故错误;D、(-2a3)2=4a6,正确;故选D本题考查了完全平方公式、同底数幂的除法、积的乘方以及合并同类项,解决本题的关键是熟记公式和
14、法则5、D【解析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围【详解】点P的坐标为(3,4),OP1点P(3,4)在O内,OPr,即r1故选D本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系6、A【解析】先在RtABD中利用勾股定理求出BD=5,在RtABF中利用勾股定理求出BF=,则AF=4-=再过G作GHBF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,由GHFB,得出=,即可求解【详解】解:在RtABD中,A=90
15、,AB=3,AD=4,BD=5,在RtABF中,A=90,AB=3,AF=4-DF=4-BF,BF2=32+(4-BF)2,解得BF=,AF=4-=过G作GHBF,交BD于H,FBD=GHD,BGH=FBG,FB=FD,FBD=FDB,FDB=GHD,GH=GD,FBG=EBC=DBC=ADB=FBD,又FBG=BGH,FBG=GBH,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,GHFB, =,即=,解得x=故选A本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键7、A【解析】根据一元二次方程的定义可得
16、m10,再解即可【详解】由题意得:m10,解得:m1,故选A此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程8、B【解析】分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,又A的坐标是(1,1),结合中点坐标公式可得P1的坐标是(1,0);同理P1的坐标是(1,1),记P1(a1,b1),其中a1=1,b1=1根据对称关系,依次可以求得
17、:P3(4a1,1b1),P4(1+a1,4+b1),P5(a1,1b1),P6(4+a1,b1),令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(41+a1,b1),1010=4501+1,点P1010的坐标是(1010,1),故选:B点睛:本题考查了对称的性质,坐标与图形的变化-旋转,根据条件求出前边几个点的坐标,得到规律是解题关键9、B【解析】根据抛物线的对称轴公式:计算即可【详解】解:抛物线yx22x3的对称轴是直线故选B此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键10、D【解析】由EFBD,1=60,结合三角形内角和为180即
18、可求出D的度数,再由“两直线平行,同位角相等”即可得出结论【详解】解:在DEF中,1=60,DEF=90,D=180-DEF-1=30ABCD,2=D=30故选D本题考查平行线的性质以及三角形内角和为180,解题关键是根据平行线的性质,找出相等、互余或互补的角二、填空题(共7小题,每小题3分,满分21分)11、18【解析】要求代数式a3b2a2b2+ab3的值,而代数式a3b2a2b2+ab3恰好可以分解为两个已知条件ab,(ab)的乘积,因此可以运用整体的数学思想来解答【详解】a3b2a2b2+ab3=ab(a22ab+b2)=ab(ab)2,当ab=3,ab=2时,原式=232=18,故答
展开阅读全文