书签 分享 收藏 举报 版权申诉 / 25
上传文档赚钱

类型2024-2025学年广东省汕尾市甲子镇瀛江校五月月考三模数学试题含解析.doc

  • 上传人(卖家):知识图书馆
  • 文档编号:8117285
  • 上传时间:2024-12-03
  • 格式:DOC
  • 页数:25
  • 大小:959.54KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2024-2025学年广东省汕尾市甲子镇瀛江校五月月考三模数学试题含解析.doc》由用户(知识图书馆)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2024 2025 学年 广东省 汕尾市 甲子 镇瀛江校 五月 月考 数学试题 解析 下载 _考试试卷_数学_初中
    资源描述:

    1、2024-2025学年广东省汕尾市甲子镇瀛江校五月月考三模数学试题注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1如图,AB为O

    2、的直径,CD是O的弦,ADC=35,则CAB的度数为(   )A35B45C55D652二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()ABCD3已知抛物线y=(x)(x)(a为正整数)与x轴交于Ma、Na两点,以MaNa表示这两点间的距离,则M1N1+M2N2+M2018N2018的值是()ABCD4下列各式中,正确的是()A(xy)=xyB(2)1=CD5如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()ABCD6如图,将边长为8的正方形ABCD折叠,使点D落

    3、在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是(     )A3cmB4cmC5cmD6cm7如图,E,B,F,C四点在一条直线上,EBCF,AD,再添一个条件仍不能证明ABCDEF的是()AABDEBDFACCEABCDABDE8如图,正方形ABCD中,AB=6,G是BC的中点将ABG沿AG对折至AFG,延长GF交DC于点E,则DE的长是  (      )A1B1.5C2D2.59如图,ABCD,DEBE,BF、DF分别为ABE、CDE的角平分线,则BFD()A110B120C125D13510已知a1,点A(x1

    4、,2)、B(x2,4)、C(x3,5)为反比例函数图象上的三点,则下列结论正确的是()Ax1x2x3Bx1x3x2Cx3x1x2Dx2x3x1二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF若AB=2,AD=3,则tanAEF的值是_12计算(a2b)3=_13在实数2、0、1、2、中,最小的是_14如图,无人机在空中C处测得地面A、B两点的俯角分别为60、45,如果无人机距地面高度CD为米,点A、D、B在同一水平直线上,则A、B两点间的距离是_米(结果保留根号)15已知一块等腰三角形钢板的底边长

    5、为60cm,腰长为50 cm,能从这块钢板上截得得最大圆得半径为_cm16如图,AB是半径为2的O的弦,将沿着弦AB折叠,正好经过圆心O,点C是折叠后的上一动点,连接并延长BC交O于点D,点E是CD的中点,连接AC,AD,EO则下列结论:ACB=120,ACD是等边三角形,EO的最小值为1,其中正确的是_(请将正确答案的序号填在横线上)三、解答题(共8题,共72分)17(8分)如图,直线与第一象限的一支双曲线交于A、B两点,A在B的左边.(1)若=4,B(3,1),求直线及双曲线的解析式:并直接写出不等式的解集;(2)若A(1,3),第三象限的双曲线上有一点C,接AC、BC,设直线BC解析式为

    6、;当ACAB时,求证:k为定值.18(8分)如图,直线yx+4与x轴交于点A,与y轴交于点B抛物线yx2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b  ,c  ,点C的坐标为  如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为mPQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值如图2,若点P是第四象限的抛物线上的一点连接PB与AP,当PBA+CBO45时求PBA的面积19(8分) “低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了两幅统计图:(1

    7、)样本中的总人数为人;扇形统计十图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?20(8分)如图,在ABC中,AB=AC,BAC=120,EF为AB的垂直平分线,交BC于点F,交AB于点E求证:FC=2BF21(8分)如图,在ABC中,ACB=90,点D是AB上一点,以BD为直径的O和AB相切于点P(1)求证:BP平分ABC;(2)若PC=1,AP=3,求BC的长22(

    8、10分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1x90)天的售价与销售量的相关信息如下表:时间x(天)1x5050x90售价(元/件)x4090每天销量(件)2002x已知该商品的进价为每件30元,设销售该商品的每天利润为y元求出y与x的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.23(12分)随着社会经济的发展,汽车逐渐走入平常百姓家某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A:车价40万元以上;B:车价在2040万元;C:车价在20万元以下

    9、;D:暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图请结合图中信息解答下列问题:(1)调查样本人数为_,样本中B类人数百分比是_,其所在扇形统计图中的圆心角度数是_;(2)把条形统计图补充完整;(3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率24某校有3000名学生为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图种类ABCDEF上学方式电动车私家车公共交

    10、通自行车步行其他某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图根据以上信息,回答下列问题:参与本次问卷调查的学生共有_人,其中选择B类的人数有_人在扇形统计图中,求E类对应的扇形圆心角的度数,并补全条形统计图若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】分析:由同弧所对的圆周角相等可知B=ADC=35;而由圆周角的推论不难得知ACB=90,则由CAB=90-B即可求得.详解:ADC=35,ADC与B所对的弧相同,B=ADC=35,AB是O的直径,ACB=90,CAB

    11、=90-B=55,故选C点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.2、C【解析】试题分析:二次函数图象开口方向向下,a0,对称轴为直线0,b0,与y轴的正半轴相交,c0,的图象经过第一、二、四象限,反比例函数图象在第一三象限,只有C选项图象符合故选C考点:1二次函数的图象;2一次函数的图象;3反比例函数的图象3、C【解析】代入y=0求出x的值,进而可得出MaNa=-,将其代入M1N1+M2N2+M2018N2018中即可求出结论【详解】解:当y=0时,有(x-)(x-)=0,解得:x1=,x2=,MaNa=-,M1N1+M2N2+M2018N2018=1-+-+-=

    12、1-=故选C本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出MaNa的值是解题的关键4、B【解析】A.括号前是负号去括号都变号; B负次方就是该数次方后的倒数,再根据前面两个负号为正;C. 两个负号为正;D.三次根号和二次根号的算法【详解】A选项,(xy)=x+y,故A错误;B选项, (2)1=,故B正确;C选项,故C错误;D选项,22,故D错误本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键5、B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形故选B考点:简单组合体的

    13、三视图6、A【解析】分析:根据折叠的性质,只要求出DN就可以求出NE,在直角CEN中,若设CN=x,则DN=NE=8x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长详解:设CN=xcm,则DN=(8x)cm,由折叠的性质知EN=DN=(8x)cm,而EC=BC=4cm,在RtECN中,由勾股定理可知EN2=EC2+CN2,即(8x)2=16+x2,整理得16x=48,所以x=1故选:A点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题7、A【解析】由EB=CF,可得出EF=BC,又有A=D,本题具备了一组边、一组角对应相

    14、等,为了再添一个条件仍不能证明ABCDEF,那么添加的条件与原来的条件可形成SSA,就不能证明ABCDEF了【详解】EB=CF,EB+BF=CF+BF,即EF=BC,又A=D,A、添加DE=AB与原条件满足SSA,不能证明ABCDEF,故A选项正确B、添加DFAC,可得DFE=ACB,根据AAS能证明ABCDEF,故B选项错误C、添加E=ABC,根据AAS能证明ABCDEF,故C选项错误D、添加ABDE,可得E=ABC,根据AAS能证明ABCDEF,故D选项错误,故选A.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判

    15、定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角8、C【解析】连接AE,根据翻折变换的性质和正方形的性质可证RtAFERtADE,在直角ECG中,根据勾股定理求出DE的长.【详解】连接AE,AB=AD=AF,D=AFE=90,由折叠的性质得:RtABGRtAFG,在AFE和ADE中,AE=AE,AD=AF,D=AFE,RtAFERtADE,EF=DE,设DE=FE=x,则CG=3,EC=6x.在直角ECG中,根据勾股定理,得:(6x)2+9=(x+3)2,解得x=2.则DE=2.熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题

    16、关键.9、D【解析】如图所示,过E作EGABABCD,EGCD,ABE+BEG=180,CDE+DEG=180,ABE+BED+CDE=360又DEBE,BF,DF分别为ABE,CDE的角平分线,FBE+FDE=(ABE+CDE)=(36090)=135,BFD=360FBEFDEBED=36013590=135故选D本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补解决问题的关键是作平行线10、B【解析】根据的图象上的三点,把三点代入可以得到x1 ,x1 ,x3,在根据a的大小即可解题【详解】解:点A(x1,1)、B(x1,4)、C(x3,5)为反比例函

    17、数图象上的三点,x1 ,x1 ,x3 ,a1,a10,x1x3x1故选B此题主要考查一次函数图象与系数的关系,解题关键在于把三点代入,在根据a的大小来判断二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】连接AF,由E是CD的中点、FC=2BF以及AB=2、AD=3可知AB=FC,BF=CE,则可证ABFFCE,进一步可得到AFE是等腰直角三角形,则AEF=45.【详解】解:连接AF,E是CD的中点,CE=,AB=2,FC=2BF,AD=3,BF=1,CF=2,BF=CE,FC=AB,B=C=90,ABFFCE,AF=EF,BAF=CFE,AFB=FEC,AFE=90,AFE

    18、是等腰直角三角形,AEF=45,tanAEF=1.故答案为:1.本题结合三角形全等考查了三角函数的知识.12、a6b3【解析】根据积的乘方和幂的乘方法则计算即可【详解】原式=(a2b)3=a6b3,故答案为a6b3.本题考查了积的乘方和幂的乘方,关键是掌握运算法则.13、1【解析】解:在实数1、0、1、1、中,最小的是1,故答案为1本题考查实数大小比较14、100(1+)【解析】分析:如图,利用平行线的性质得A=60,B=45,在RtACD中利用正切定义可计算出AD=100,在RtBCD中利用等腰直角三角形的性质得BD=CD=100,然后计算AD+BD即可详解:如图,无人机在空中C处测得地面A

    19、、B两点的俯角分别为60、45,A=60,B=45,在RtACD中,tanA=,AD=100,在RtBCD中,BD=CD=100,AB=AD+BD=100+100=100(1+)答:A、B两点间的距离为100(1+)米故答案为100(1+)点睛:本题考查了解直角三角形的应用仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形15、15【解析】如图,等腰ABC的内切圆O是能从这块钢板上截得的最大圆,则由题意可知:AD和BF是ABC的角平分线,AB=AC=50cm,BC=60cm,ADB=90,BD=CD=30c

    20、m,AD=(cm),连接圆心O和切点E,则BEO=90,又OD=OE,OB=OB,BEOBDO,BE=BD=30cm,AE=AB-BE=50-30=20cm,设OD=OE=x,则AO=40-x,在RtAOE中,由勾股定理可得:,解得:(cm).即能截得的最大圆的半径为15cm.故答案为:15.点睛:(1)三角形中能够裁剪出的最大的圆是这个三角形的内切圆;(2)若三角形的三边长分别为a、b、c,面积为S,内切圆的半径为r,则.16、【解析】根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断是否正确,EO的最小值问题是个难点,这是一个动点问题,只要把握住E在什

    21、么轨迹上运动,便可解决问题【详解】如图1,连接OA和OB,作OFAB由题知: 沿着弦AB折叠,正好经过圆心OOF=OA= OBAOF=BOF=60AOB=120ACB=120(同弧所对圆周角相等)D=AOB=60(同弧所对的圆周角是圆心角的一半)ACD=180-ACB=60ACD是等边三角形(有两个角是60的三角形是等边三角形)故,正确   下面研究问题EO的最小值是否是1  如图2,连接AE和EFACD是等边三角形,E是CD中点AEBD(三线合一)又OFABF是AB中点即,EF是ABE斜边中线AF=EF=BF即,E点在以AB为直径的圆上运动所以,如图3,当E、O

    22、、F在同一直线时,OE长度最小此时,AE=EF,AEEFO的半径是2,即OA=2,OF=1AF= (勾股定理)OE=EF-OF=AF-OF=-1所以,不正确综上所述:正确,不正确故答案是:考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径也考查了垂径定理三、解答题(共8题,共72分)17、 (1) 1x3或x0;(2)证明见解析.【解析】(1)将B(3,1)代入,将B(3,1)代入,即可求出解析式;再根据图像直接写出不等式的解集;(2)过A作lx轴,过C作CGl于G,过B作BHl于H,

    23、AGCBHA, 设B(m, )、C(n, ),根据对应线段成比例即可得出mn=9,联立,得,根据根与系数的关系得,由此得出为定值.【详解】解:(1)将B(3,1)代入,m=3, ,将B(3,1)代入,,不等式的解集为1x3或x0(2)过A作lx轴,过C作CGl于G,过B作BHl于H,则AGCBHA,设B(m, )、C(n, ),   , , mn=9,联立,    ,为定值.此题主要考查反比例函数的图像与性质,解题的关键是根据题意作出辅助线,再根据反比例函数的性质进行求解.18、(3)3, 2,C(2,4);(2)ym2+m ,PQ与OQ的比值的最大值为;(3)S

    24、PBA3【解析】(3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=4便可得C点坐标(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到,设点P坐标为(m,-m2+m+2),Q点坐标(n,-n+2),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用即可求解(3)求得P点坐标,利用图形割补法求解即可【详解】(3)直线yx+2与x轴交于点A,与y轴交于点BA(2,4),B(4,2)又抛物线过B(4,2)c2把A(2,4)代入yx2+bx+2得,422+2b+2,解得,b3抛物线解析式为,yx2+x+2令x2+x+

    25、24,解得,x2或x2C(2,4)(2)如图3,分别过P、Q作PE、QD垂直于x轴交x轴于点E、D设P(m,m2+m+2),Q(n,n+2),则PEm2+m+2,QDn+2又yn又,即把n代入上式得,整理得,2ym2+2mym2+mymax即PQ与OQ的比值的最大值为(3)如图2,OBAOBP+PBA25PBA+CBO25OBPCBO此时PB过点(2,4)设直线PB解析式为,ykx+2把点(2,4)代入上式得,42k+2解得,k2直线PB解析式为,y2x+2令2x+2x2+x+2整理得, x23x4解得,x4(舍去)或x5当x5时,2x+225+27P(5,7)过P作PHcy轴于点H则S四边形

    26、OHPA(OA+PH)OH(2+5)724SOABOAOB227SBHPPHBH5335SPBAS四边形OHPA+SOABSBHP24+7353本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力还考查了运用图形割补法求解坐标系内图形的面积的方法19、 (1) 80、72;(2) 16人;(3) 50人【解析】(1) 用步行人数除以其所占的百分比即可得到样本总人数:810%=80(人);用总人数乘以开私家车的所占百分比即可求出,即 m=8025%=20;用3600乘以骑自行

    27、车所占的百分比即可求出其所在扇形的圆心角:360(1-10%-25%-45%)=.(2) 根据扇形统计图算出骑自行车的所占百分比, 再用总人数乘以该百分比即可求出骑自行车的人数, 补全条形图即可(3) 依题意设原来开私家车的人中有x人改为骑自行车, 用x分别表示改变出行方式后的骑自行车和开私家车的人数, 根据题意列出一元一次不等式, 解不等式即可【详解】解:(1)样本中的总人数为810%=80人,骑自行车的百分比为1(10%+25%+45%)=20%,扇形统计十图中“骑自行车”所在扇形的圆心角为36020%=72(2)骑自行车的人数为8020%=16人,补全图形如下:(3)设原来开私家车的人中

    28、有x人改骑自行车,由题意,得:1000(110%25%45%)+x100025%x,解得:x50,原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数本题主要考查统计图表和一元一次不等式的应用。20、见解析【解析】连接AF,结合条件可得到B=C=30,AFC=60,再利用含30直角三角形的性质可得到AF=BF=CF,可证得结论【详解】证明:连接AF,EF为AB的垂直平分线,AF=BF,又AB=AC,BAC=120,B=C=BAF=30,FAC=90,AF=FC,FC=2BF本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离

    29、相等是解题的关键21、(1)证明见解析;(2) 【解析】试题分析:(1)连接OP,首先证明OPBC,推出OPB=PBC,由OP=OB,推出OPB=OBP,由此推出PBC=OBP;(2)作PHAB于H首先证明PC=PH=1,在RtAPH中,求出AH,由APHABC,求出AB、BH,由RtPBCRtPBH,推出BC=BH即可解决问题.试题解析:(1)连接OP,AC是O的切线,OPAC, APO=ACB=90,OPBC,OPB=PBC,OP=OB,OPB=OBP,PBC=OBP,BP平分ABC;(2)作PHAB于H则AHP=BHP=ACB=90,又PBC=OBP,PB=PB,PBCPBH ,PC=P

    30、H=1,BC=BH,在RtAPH中,AH=,在RtACB中,AC2+BC2=AB2(AP+PC)2+BC2=(AH+HB)2,即42+BC2=(+BC)2,解得 22、(1);(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.【解析】(1)根据单价乘以数量,可得利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案【详解】(1)当1x50时,当50x90时,综上所述:.(2)当1x50时,二次函数开口下,二次函数对称轴为x=45,当x

    31、=45时,y最大=-2452+18045+2000=6050,当50x90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.(3)解,结合函数自变量取值范围解得,解,结合函数自变量取值范围解得所以当20x60时,即共41天,每天销售利润不低于4800元本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用23、(1)50,20%,72(2)图形见解析;(3)选出的2人来自不同科室的概率=【解析】试题分析:(1)根据调查样本人数=A类的人数除以

    32、对应的百分比样本中B类人数百分比=B类人数除以总人数,B类人数所在扇形统计图中的圆心角度数=B类人数的百分比360(2)先求出样本中B类人数,再画图(3)画树状图并求出选出的2人来自不同科室的概率试题解析:(1)调查样本人数为48%=50(人),样本中B类人数百分比(504288)50=20%,B类人数所在扇形统计图中的圆心角度数是20%360=72;(2)如图,样本中B类人数=504288=10(人);(3)画树状图为:共有20种可能的结果数,其中选出选出的2人来自不同科室占12种,所以选出的2人来自不同科室的概率=考点:1.条形统计图2.扇形统计图3.列表法与树状图法24、 (1)450、

    33、63; 36,图见解析; (3)2460 人【解析】(1)根据“骑电动车”上下的人数除以所占的百分比,即可得到调查学生数;用调查学生数乘以选择类的人数所占的百分比,即可求出选择类的人数.(2)求出类的百分比,乘以即可求出类对应的扇形圆心角的度数;由总学生数求出选择公共交通的人数,补全统计图即可;(3)由总人数乘以“绿色出行”的百分比,即可得到结果【详解】(1) 参与本次问卷调查的学生共有:(人);选择类的人数有: 故答案为450、63;(2)类所占的百分比为: 类对应的扇形圆心角的度数为: 选择类的人数为:(人).补全条形统计图为:(3) 估计该校每天“绿色出行”的学生人数为3000(1-14%-4%)=2460 人本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2024-2025学年广东省汕尾市甲子镇瀛江校五月月考三模数学试题含解析.doc
    链接地址:https://www.163wenku.com/p-8117285.html
    知识图书馆
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库