2023-2024学年山东省单县第一中学数学高二上期末监测试题含解析.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2023-2024学年山东省单县第一中学数学高二上期末监测试题含解析.doc》由用户(知识图书馆)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 2024 学年 山东省 单县 第一 中学数学 上期 监测 试题 解析 下载 _考试试卷_数学_高中
- 资源描述:
-
1、2023-2024学年山东省单县第一中学数学高二上期末监测试题注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线的焦距为,且双曲线的一条渐近线与直线平行,则双曲线的方程为()A.B.C.D.2已知圆,过点P的直线l被圆C所截,且截得最长弦的长度与最短弦的长度比值为54,若O为坐标原点,则最大值为()A.3B.
2、4C.5D.63若向量,则()A.B.C.D.419世纪法国著名数学家加斯帕尔蒙日,创立了画法几何学,推动了空间几何学的独立发展,提出了著名的蒙日圆定理:椭圆的两条切线互相垂直,则切线的交点位于一个与椭圆同心的圆上,称为蒙日圆,且该圆的半径等于椭圆长半轴长与短半轴长的平方和的算术平方根若圆与椭圆的蒙日圆有且仅有一个公共点,则b的值为( )A.B.C.D.5已知是定义在上的函数,且对任意都有,若函数的图象关于点对称,且,则()A.B.C.D.6已知实数,满足,则的最大值为()A.B.C.D.7如图,双曲线,是圆的一条直径,若双曲线过,两点,且离心率为,则直线的方程为()A.B.C.D.8已知函数
3、,则下列判断正确的是()A.直线与曲线相切B.函数只有极大值,无极小值C.若与互为相反数,则的极值与的极值互为相反数D.若与互为倒数,则的极值与的极值互为倒数9将函数图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再将所得图象向右平移个单位长度,得到函数的图象,则()A.B.C.D.10为推动党史学习教育各项工作扎实开展,营造“学党史、悟思想、办实事、开新局”的浓厚氛围,某校党委计划将中心组学习、专题报告会、党员活动日、主题班会、主题团日这五种活动分5个阶段安排,以推动党史学习教育工作的进行,若主题班会、主题团日这两个阶段相邻,且中心组学习必须安排在前两阶段并与党员活动日不相邻,则不同的安排
4、方案共有()A.10种B.12种C.16种D.24种11若数列是等比数列,且,则()A.1B.2C.4D.812公元前6世纪,古希腊的毕达哥拉斯学派研究发现了黄金分割,简称黄金数离心率等于黄金数的倒数的双曲线称为黄金双曲线若双曲线是黄金双曲线,则()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13数列满足,则_.14已知直线与圆交于,两点,则的最小值为_.15数学中有许多形状优美、寓意美好的曲线,曲线就是其中之一(如图),给出下列三个结论:曲线C恰好经过6个整点(即横、纵坐标均为整数的点);曲线C上任意一点到原点的距离都不超过;曲线C所围成的“心形”区域的面积小于3;其中,
5、所有正确结论的序号是_16设椭圆,点在椭圆上,求该椭圆在P处的切线方程_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知圆C经过点,且它的圆心C在直线上.(1)求圆C的方程;(2)过点作圆C的两条切线,切点分别为M,N,求三角形PMN的面积.18(12分)已知函数,其中,.(1)当时,求曲线在点处切线方程;(2)求函数的单调区间.19(12分)某市对新形势下的中考改革工作进行了全面的部署安排.中考录取科目设置分为固定赋分科目和非固定赋分科目,固定赋分科目(语文、数学、英语、物理、体育与健康)按卷面分计算;非固定赋分科目(化学、生物、道德与法治、历史、地理)按学
6、生在该学科中的排名进行等级赋分,即根据改革方案,将每门等级考试科目中考生的原始成绩从高到低分为A,共个等级.参照正态分布原则,确定各等级人数所占比例分别为,.等级考试科目成绩计入考生总成绩时,将A至等级内的考生原始成绩,依照等比例转换法则,分别转换到,八个分数区间,得到考生的等级成绩.该市学生的中考化学原始成绩制成频率分布直方图如图所示:(1)求图中的值;(2)估计该市学生中考化学原始成绩不少于多少分才能达到等级及以上(含等级)?(3)由于中考改革后学生各科原始成绩不再返回学校,只告知各校参考学生的各科平均成绩及方差.已知某校初三共有名学生参加中考,为了估计该校学生的化学原始成绩达到等级及以上
7、(含等级)的人数,将该校学生的化学原始成绩看作服从正态分布,并用这名学生的化学平均成绩作为的估计值,用这名学生化学成绩的方差作为的估计值,计算人数(结果保留整数)附:,.20(12分)自我国爆发新冠肺炎疫情以来,各地医疗单位都加紧了医疗用品的生产某医疗器械厂统计了口罩生产车间每名工人的生产速度,并将所得数据分成五组并绘制出如图所示的频率分布直方图已知前四组的频率成等差数列,第五组与第二组的频率相等(1)估计口罩生产车间工人生产速度的中位数(结果写成分数的形式);(2)为了解该车间工人的生产速度是否与他们的工作经验有关,现从车间所有工人中随机抽样调查了5名工人的生产速度以及他们的工龄(参加工作的
8、年限),数据如下表:工龄x(单位:年)4681012生产速度y(单位:件/小时)4257626267根据上述数据求每名工人的生产速度y关于他的工龄x的回归方程,并据此估计该车间某位有16年工龄的工人的生产速度附:回归方程中斜率和截距的最小二乘估计公式为:,21(12分)设数列的前项和为,已知,且(1)证明:;(2)求22(10分)已知抛物线,过焦点的直线l交抛物线C于M、N两点,且线段中点的纵坐标为2(1)求直线l的方程;(2)设x轴上关于y轴对称的两点P、Q,(其中P在Q的右侧),过P的任意一条直线交抛物线C于A、B两点,求证:始终被x轴平分参考答案一、选择题:本题共12小题,每小题5分,共
9、60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据焦点在x轴上的双曲线渐近线斜率为可求a,b关系,再结合a,b,c关系即可求解【详解】双曲线1(a0,b0)的焦距为2,且双曲线的一条渐近线与直线2xy0平行,b2a,c2a2b2,a1,b2,双曲线的方程为故选:B2、C【解析】由题意,点P在圆C内,且最长弦的长度为直径长10,则最短弦的长度为8,进而可得,所以点P的轨迹为以C为圆心,半径为3的圆,从而即可求解.【详解】解:由题意,圆,所以圆C是以为圆心,半径为5的圆,因为过点P的直线l被圆C所截,且截得最长弦的长度与最短弦的长度比值为54,所以点P在圆C内,且最长弦
10、的长度为直径长10,则最短弦的长度为8,所以由弦长公式有,所以点P的轨迹为以C为圆心,半径为3的圆,所以,故选:C.3、D【解析】由向量数量积的坐标运算求得数量积,模,结合向量的共线定义判断【详解】由已知,与不垂直,若,则,但是,因此与不共线故选:D4、B【解析】由题意求出蒙日圆方程,再由两圆只有一个交点可知两圆相切,从而列方程可求出b的值【详解】由题意可得椭圆的蒙日圆的半径,所以蒙日圆方程为,因为圆与椭圆的蒙日圆有且仅有一个公共点,所以两圆相切,所以,解得,故选:B5、D【解析】令,代入可得,即得,再由函数的图象关于点对称,判断得函数的图象关于点对称,即,则化简可得,即函数的周期为,从而代入
展开阅读全文