《工程力学》课件第2章.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《工程力学》课件第2章.ppt》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程力学 课件
- 资源描述:
-
1、第2章 平面力系的平衡2.1平面力系概述2.2平面任意力系的平衡方程与应用2.3几种特殊平面力系的平衡问题2.4物系的平衡2.5考虑摩擦时物体的平衡问题2.1平面力系概述平面力系概述 如果作用于物体上各力的作用线都在同一平面内,则称这种力系为平面力系。工程实际中很多构件所受的力系都可以看成为平面力系。例如,图2.1(a)所示的支架式起吊机受到主动力G1、G2以及约束反力FBx、FBy、FNA的作用,这些力的作用线在同一平面内,组成一个平面力系。又如,图2.1(b)所示的曲柄连杆机构受到转矩M、阻力F以及约束反力FAx、FAy、FN的作用,显然这些力也构成了平面力系。平面力系根据其中各力的作用线
2、分布不同又可分为平面汇交力系(各力的作用线汇交于一点)、平面力偶系(全部由力偶组成)、平面平行力系(各力的作用线互相平行)和平面任意力系(各力的作用线在平面内任意分布)。图 2.12.1.1 力的平移定理力的平移定理设在刚体上A点有一个力F,现要将它平行移动到刚体内的任意指定点B,而不改变它对刚体的作用效应。为此,可在B点加上一对平衡力F、F,如图2.2所示,并使它们的作用线与力F的作用线平行,且F=F=F。根据加减平衡力系公理,三个力与原力F对刚体的作用效应相同。力F、F组成一个力偶M,其力偶矩的大小等于原力F对B点之矩,即 M=MB(F)=Fd (2.1)这样就把作用在A点的力平行移动到了
3、任意点B,但必须同时在该力与指定点B所决定的平面内加上一个相应的力偶M,通常将其称为附加力偶。由此可得力的平移定理:作用于刚体上的力可以平行移动到刚体上的任意指定点,但必须同时在该力与指定点所决定的平面内附加一力偶,其力偶矩的大小等于原力对指定点之矩。图2.2根据力的平移定理,可以将一个力分解为一个力和一个力偶,也可以将同一平面内的一个力和一个力偶合成为一个力。力的平移定理揭示了力与力偶在对物体作用效应之间的区别和联系:一个力不能与一个力偶等效,但一个力可以与另一个同它平行的力和一个力偶的联合作用等效。2.1.2平面任意力系向一点简化平面任意力系向一点简化设在刚体上作用有一平面任意力系F1,F
4、2,Fn,各力的作用点分别为A1,A2,An,如图2.3(a)所示,在平面内任选一点O,称为简化中心,利用力的平移定理,将力系中的各力分别平移到O点,得到一个作用于O点的平面汇交力系 ,,和一个附加的平面力偶系M1=MO(F1),M2=MO(F2),Mn=MO(Fn),如图2.3(b)所示。1F2FnF根据式(1.7),平面汇交力系 ,可以合成为一个力 ,根据式(1.14),平面力偶系1=MO(F1),M2=MO(F2),Mn=MO(Fn)可以合成为一力偶MO,如图2.3(c)所示。1F2FnFRF图 2.31.力系的主矢力系的主矢平移力 ,组成的平面汇交力系的合力 ,称为原平面任意力系的主矢
5、。的作用点在简化中心O点,大小等于各分力的矢量和,即 1F2FnFRFRF(2.2)在平面直角坐标系中,则有(2.3)(2.4)式中,分别为主矢 和各力在x、y轴上的投影;为主矢的大小;为 与x轴所夹的锐角,的指向由Fx和Fy的正负来确定。2.力系的主矩力系的主矩附加的平面力偶系M1=MO(F1),M2=MO(F2),Mn=MO(Fn)的合力偶矩的大小为MO,称为原平面任意力系对简化中心O点的主矩。MO等于力系中各力对简化中心O点之矩的代数和,即 MO=M1+M2+Mn=MO(F)=M (2.5)值得注意的是,选取不同的简化中心,主矢不会改变,因为主矢总是等于原力系中各力的矢量和。也就是说,主
6、矢与简化中心的位置无关,而主矩等于原力系中各力对简化中心之矩的代数和。一般来说,主矩与简化中心有关,提到主矩时一定要指明是对哪一点的主矩。主矢与主矩的共同作用才与原力系等效。2.1.3简化结果的讨论简化结果的讨论平面任意力系向一点简化,一般可得到一个主矢和一个主矩,但这不是简化的最终结果,因此,有必要对简化的结果进行以下几个方面的讨论。(1)。根据力的平移定理的逆过程,可将主矢与主矩MO简化为一个合力FR,合力FR的大小、方向与主矢 相同,FR的作用线与主矢的作用线平行,但相距 ,如图2.3(e)所示。此合力FR与原力系等效,即平面任意力系可简化为一个合力。(2)。原力系与一个力等效,即原力系
7、可简化为一个合力。合力等于主矢,合力的作用线通过简化中心。(3)。原力系与一个力偶等效,即原力系可简化为一个合力偶。合力偶矩等于主矩,此时,主矩与简化中心的位置无关。(4)。原力系处于平衡状态,即原力系为一平衡力系。【例2.1】如图2.4(a)所示,正方形平面板的边长为4a,在板上A、O、B、C处分别作用有力F1,F2,3,F4,其中,F3=2F,F4=3F。求作用在板上此力系的合力。图 2.4解解(1)选O点为简化中心,建立如图2.4(a)所示的直角坐标系,求力系的主矢和主矩。由式(2.2)式(2.5)可得:主矢的大小为主矢的方向为由于x和Fy都为正,因此主矢 指向第一象限。主矩的大小为主矩
8、的转向为逆时针方向。力系向O点简化的结果如图2.4(b)所示。(2)由于 ,MO0,根据力的平移定理的逆过程,可将主矢 与主矩MO简化为一个合力FR。合力FR的大小、方向与主矢 相同,FR的作用线与主矢的作用线平行,但相距 力系合力的作用线通过D点,如图2.4(c)所示 RFRFRF2.2平面任意力系的平衡方程与应用平面任意力系的平衡方程与应用 由2.1节的讨论结果可知,如果平面任意力系向任一点简化后的主矢和主矩同时为零,则该力系处于平衡。反之,要使平面任意力系处于平衡,主矢和主矩都必须等于零。因此,平面任意力系平衡的必要与充分条件为:,MO=0,即 0RF由此可得平面任意力系的平衡方程为(2
9、.6)式(2.6)是平面任意力系平衡方程的基本形式,也称为一力矩式方程。它说明平面任意力系平衡的解析条件是:力系中各力在平面内任选两个坐标轴上的投影的代数和分别为零,并且各力对平面内任意一点之矩的代数和也等于零。这三个方程是各自独立的三个平衡方程,只能求解三个未知量。【例2.2】图2.5(a)所示为简易起吊机的平面力系简图。已知横梁AB的自重G1=4 kN,起吊总量G2=20 kN,AB的长度l=2 m,斜拉杆CD的倾角=30,自重不计,当电葫芦距A端距离a=1.5 m时,处于平衡状态。试求拉杆CD的拉力和A端固定铰链支座的约束反力。图 2.5解(1)以横梁AB为研究对象,取分离体画受力图。作
10、用在横梁上的主动力:在横梁中点的自重G1、起吊重量G2。作用在横梁上的约束反力:拉杆CD的拉力FCD、铰链A点的约束反力FAx、FAy,如图2.5(b)所示。(2)建立直角坐标系,列平衡方程。(a)(b)(c)(3)求解未知量。由式(a)得将FCD代入式(b)得FAx=FCDcos=29.44 k 将FCD代入式(c)得FAy=G1+G2-FCDsin=7 kNFCD、FAx、FAy都为正值,表示力的实际方向与假设方向相同;若为负值,则表示力的实际方向与假设方向相反。(4)讨论。本题若写出对A、B两点的力矩方程和对x轴的投影方程,则同样可求解,即由解得若写出对A、B、C三点的力矩方程 则也可得
11、出同样的结果。由例2.2的讨论可知,平面任意力系的平衡方程除了式(2.6)所示的基本形式以外,还有二力矩形式和三力矩形式,其形式如下:(2.7)其中,A、B两点的连线不能与x轴(或y轴)垂直。其中,A、B、C三点不能共线。在应用二力矩形式或三力矩形式时,必须满足其限制条件,否则所列三个平衡方程将不都是独立的。(2.8)2.3几种特殊平面力系的平衡问题几种特殊平面力系的平衡问题2.3.1平面汇交力系的平衡平面汇交力系的平衡1.平面汇交力系的平衡方程平面汇交力系的平衡方程由于平面汇交力系中各力的作用线汇交于一点,MO(F)=0自然满足,因此其平衡的必要且充分条件为:力系中各力在两个相互垂直的坐标轴
12、上的投影的代数和分别为零,即(2.9)2.平面汇交力系的平衡方程的应用平面汇交力系的平衡方程的应用【例2.3】如图2.6(a)所示,圆球重G=100,放在倾角=30的光滑斜面上,并用绳子AB系住,绳子AB与斜面平行。试求绳子AB的拉力和斜面对球的约束力。图2.6解解(1)选圆球为研究对象,取分离体画受力图。主动力:重力G。约束反力:绳子AB的拉力FT、斜面对球的约束力FN。受力图如图2.6(b)所示。(2)建立直角坐标系Oxy,列平衡方程并求解。Fx=0 FT-Gsin30=0FT=50 N(方向如图所示)Fy=0 FN-Gcos30=0FN=86.6 N(方向如图所示)(3)若选取如图2.6
13、(c)所示的直角坐标系,列平衡方程得:Fx=0 FTcos30-FNcos60=0Fy=0 FTsin30+FNsin60-G=0联立求解方程组得:FT=50 N(方向如图所示)N=86.6 N(方向如图所示)由此可见,建立直角坐标系时,坐标轴应尽量选在与未知力垂直的方向上,这样可以简化计算。【例2.4】图2.7(a)所示的三角支架由杆AB、BC组成,A、B、C处均为光滑铰链,在销钉B上悬挂一重物,已知重物的重量G=10 kN,杆件自重不计。试求杆件AB、BC所受的力。图2.7解(1)取销钉B为研究对象,画受力图。主动力:重力G。约束反力:由于杆件AB、BC的自重不计,且杆两端均为铰链约束,因
14、此AB、BC均为二力杆件,杆件两端受力必沿杆件的轴线,根据作用与反作用力关系,两杆的B端对于销钉有反作用力F1、F2,受力图如图2.7(b)所示。(2)建立直角坐标系Bxy,列平衡方程并求解。Fy=0 F2sin30-G=02=20 kNFx=0 F2cos30-F1=0F1=17.32 kN根据作用力与反作用力定律,杆件AB所受的力为17.32 kN,且为拉力;BC所受的力为20 kN,且为压力。2.3.2平面力偶系的平衡平面力偶系的平衡根据式(1.14),平面力偶系可简化为一个合力偶,故平面力偶系平衡的必要和充分条件为:力偶系中各力偶矩的代数和等于零,即 M=0 (2.10)式(2.10)
15、称为平面力偶系的平衡方程。一个力偶系平衡方程只能解一个未知数。【例2.5】用多轴钻床在一水平放置的工件上加工四个直径相同的孔,钻孔时每个钻头的主切削力组成一力偶,各力偶矩的大小M1=M2=M3=M4=15 Nm,两个固定螺栓A、B之间的距离为200 mm,如图2.8所示。试求加工时两个固定螺栓A、B所受的力。图2.8解解(1)取工件为研究对象,画受力图。主动力:四个已知的力偶。约束反力:固定螺栓A、B所给的约束反力FA、FB,由于力偶只能与力偶平衡,因此B处约束反力FB必和A处约束反力FA组成一力偶,即两力平行、等值、反向,力偶臂长为200 mm,受力图如图2.8(b)所示。(2)列平衡方程并
16、求解。M=0 -4M1+M(FA,B)=0FA=FB=300 N(方向如图所示)根据作用与反作用定律,两个固定螺栓A、B所受的力分别为F=FB=300 N,方向与图示方向相反。2.3.3平面平行力系的平衡平面平行力系的平衡在平面平行力系中,若选择直角坐标轴的y(或x)轴与力系各力作用线平行,则每个力在x(或y)轴上的投影均为零,即Fx0(或Fy0),于是平行力系只有两个独立的平衡方程,即(2.11)式(2.11)为平面平行力系的平衡方程,它表明平面平行力系平衡的必要和充分条件是:力系中各力在与力平行的坐标轴上的投影的代数和为零,各力对任意点之矩的代数和也为零或二力矩形式,即(2.12)平面平行
17、力系只有两个独立的平衡方程,只能求解两个未知数。【例2.6】塔式起重机如图2.9(a)所示,已知轨距为4 m,机身重G=500 kN,其作用线至机架中心线的距离为4 m,起重机最大起吊载荷G1=260 kN,其作用线至机架中心线的距离为12 m,平衡块G2至机架中心线的距离为6 m。欲使起重机满载时不向右倾倒,空载时不向左倾倒,试确定平衡块重G2;当平衡块重G2=600 kN时,试求满载时轨道对轮子的约束反力。图 2.9 解解 (1)取起重机为研究对象,画受力图。主动力:机身重力G、起吊载荷G1、平衡块重G2。约束反力:轨道对轮子的约束反力FA、FB。受力图如图2.9(b)所示。(2)列平衡方
18、程,求平衡块重。满载时的情况。满载时,若平衡块太轻,则起重机将会绕B点向右翻倒,在平衡的临界状态时,FA等于零,平衡块重达到允许的最小值2min。MB(F)=0 G2min(6+2)-G(4-2)-G1(12-2)=0 G2min=450 kN 空载时的情况。空载时,起重机在平衡块的作用下,将会绕A点向左翻倒,在平衡的临界状态时,FB等于零,平衡块重达到允许的最大值G2max。A(F)=0G2max(6-2)-G(4+2)=0 G2max=750 kN因此,要保证起重机在满载和空载时均不致翻倒,平衡块重应满足如下条件:450 kNG2750 kN(3)列平衡方程,求G2=600 kN满载时轮轨
19、对机轮的约束反力。MB(F)=0G2(6+2)-FA4-G(4-2)-G1(12-2)=0 FA=300 kN(方向如图)MA(F)=0G2(6-2)+FB4-G(4+2)-G1(12+2)=0 FB=1060 kN(方向如图)【例2.7】一端固定的悬臂梁AB如图2.10(a)所示。已知q=10 kN/m,F=20 kN,M=10 kNm,l=2 m,试求梁支座A的约束反力。图2.10解解 (1)取悬臂梁AB为研究对象,画受力图。主动力:集中力F、分布载荷q、力偶M。物体所受的力如果是沿着一条线连续分布且相互平行的力系,则称为线分布载荷。图2.10(a)中,载荷q称为载荷集度,表示单位长度上所
展开阅读全文