书签 分享 收藏 举报 版权申诉 / 9
上传文档赚钱

类型人教A版高中数学选修2-1《圆锥曲线起始课》教学设计.doc

  • 上传人(卖家):副主任
  • 文档编号:811040
  • 上传时间:2020-10-25
  • 格式:DOC
  • 页数:9
  • 大小:1.71MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《人教A版高中数学选修2-1《圆锥曲线起始课》教学设计.doc》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    圆锥曲线起始课 人教 高中数学 选修 圆锥曲线 起始 教学 设计 下载 _人教A版_数学_高中
    资源描述:

    1、指定课题:圆锥曲线与方程(起始课) 一、教学设计 1教学内容解析 圆锥曲线与方程安排在普通高中人教 A 版选修 2-1 中教材通过章引言介绍了圆锥曲 线的名称由来、发展历史、实际用途和坐标方法,主要说明圆锥曲线是什么、为什么要学习圆 锥曲线和怎样学习圆锥曲线尤其是着重说明了类比研究直线与圆的坐标法,研究圆锥曲线的 基本套路同时教材又进一步通过【探究与发现】介绍了 Dandelin 双球证法,说明了为什么二 次函数的图象是抛物线;通过【信息技术应用】介绍了用几何画板探究椭圆的轨迹;通过 【阅读与思考】介绍了圆锥曲线的光学性质及其应用 基于教材对本章内容设置的前后一致逻辑连贯的结构顺序,作为本章起

    2、始课,拟定以了解 圆锥曲线的发展过程和理解圆锥曲线的心理过程为基本线索, 力图为学生构建前后一致逻辑连 贯的学习过程,使学生在领悟圆锥曲线名称由来、广泛应用和研究方法的过程中学会思考,并 侧重于椭圆定义的探究及初步应用 根据以上分析,本节课的教学重点确定为 教学重点:教学重点:椭圆的定义探究及初步应用(Dandelin 双球证法) 2学生学情诊断 首先,学生在数学 2中学习了研究直线与圆的坐标法,初步具备了运用代数方法研究 几何问题的意识,初步感受了数形结合的基本思想,对椭圆、抛物线和双曲线的概念也仅仅停 留在直观感性认识的层面上因此,圆锥曲线作为学生再度理解坐标法和进一步感悟数形结合 思想的

    3、学习内容,是螺旋上升的过程中掌握解析几何思想方法的一个突破口 其次,本节课授课班级是我校实验班,尽管数学基础总体水平较好,但如何将几何问题代 数化仍然是多数学生所面临的难题为此,在起始课中,为降低难点,只让学生初步尝试给定 数据的具体椭圆方程的推导方法,而将引发学生推导椭圆标准方程一般式作为后继学习内容 根据以上分析,本节课的教学难点确定为 教学难点:教学难点:具体条件下椭圆方程的推导和化简;坐标法的应用 3教学目标设置 (1)通过动态演示平面与圆锥面的截线,学生经历从具体情境中抽象出椭圆、双曲线、 抛物线模型的过程,感知圆锥曲线的来由; (2)通过丰富多彩的实例,学生体会圆锥曲线应用的广泛性

    4、,数与形的辩证统一的关系 和圆锥曲线的内在美、和谐美和统一美,感受学习圆锥曲线的理由; (3)借助展板动手操作和类比圆的定义,学生探究椭圆的定义,能用文字和符号语言描 述椭圆的定义,会用 Dandelin 双球证明截口曲线为椭圆的情形,感悟圆锥曲线学法的因由 (4)通过具体画出的特殊椭圆,学生类比直线与圆的方程,会初步运用坐标法推导具体 给定的椭圆方程,能说出圆锥曲线又作为二次曲线的特征,感触圆锥曲线方程的情由 4教学策略分析 根据章起始课应体现统领全局的地位和作用的特点, 采用“引言导入问题诱导启发讨 论抽象概括探索归纳总结规律”的探究式教学方法,紧紧围绕为什么学、学什么以及怎 样学等问题展

    5、开,通过“引、思、探、练、归”相结合的做法,让学生初识圆锥曲线的相关背 景、知识结构、逻辑体系和应用价值,明晰本章的学习内容、学习特点和学习方法 为避免以教师讲解为主的告知式,采用激发兴趣、主动参与、积极体验、自主探究的教学 方式,形成师生互动的教学氛围,充分调动学生的积极性,引发学生对圆锥曲线进一步学习的 强烈期待,为全章内容的后续学习起到较好的铺垫作用 具体教学策略分成如下五个环节: 第一环节:引言启导,追溯缘由从“嫦娥奔月”的情景和阅读章引言出发,通过问题设疑, 引导学生在不断思考中获取圆锥曲线的来龙去脉; 第二环节:应用开路,初识性质从圆锥曲线广泛的应用性出发,通过引言解读和趣味传 说

    6、,引导学生初识圆锥曲线的几何特征和光学性质; 第三环节:定义探究,双球验证从抽象概括椭圆的定义出发,通过类比圆的定义、动手 操作画椭圆和探讨 Dandelin 双球证法,引导学生归纳和运用椭圆的定义; 第四环节:方程推导,方法研究从特殊椭圆方程的推导出发,通过类比直线与圆的方程 的推导方法,引导学生尝试运用坐标法的基本步骤导出具体给定的椭圆方程; 第五环节:课堂小结,有效建构从学生自主归纳小结出发,通过引言提炼的内容概述图 和融合三种圆锥曲线的知识结构图,让整章的知识体系和逻辑线索鲜活地展现在学生面前 其教学流程如下: 二、课堂实录 (一)情景引入(一)情景引入 引言:引言:随着我国航天技术的

    7、发展日新月异,“嫦娥奔月”这一古老而美丽的传说正在逐步变 为现实请同学们观看视频 师:这是嫦娥 3 号环月运行时变轨的过程变轨后轨道是什么曲线? 生:椭圆 师:对!椭圆这一类曲线正是我们在本章将要研究的主要内容请同学们翻开课本第 33 页,阅读本章引言 (板书标题:圆锥曲线与方程) 引言启导 追溯缘由 应用开路 初识性质 定义探究 双球验证 方程推导 方法研究 课堂小结 有效建构 (二)课内建构(二)课内建构 1名称由来名称由来 师:好!请同学们停下来,看大屏幕,同学们看书之后,知道圆锥曲线包括哪几种曲线吗? 生:圆,椭圆,双曲线,抛物线 师:对!那么为什么称为圆锥曲线呢?与圆锥有怎样的关系吗

    8、? 请看动画 我们知道, 用平面截一个圆锥, 当平面与圆锥的轴垂直时, 截口曲线是一个圆 用 平面截圆锥面还能得到哪些曲线? (教师以 flash 动画给学生展示:当平面与轴所成的角变化(其中截面不过顶点)时, 截口曲线的变化情况 ) 师:早在公元前约 200 年时,古希腊数学家阿波罗尼奥斯(Apollonius,约前 262 年约 前 190 年)对圆锥曲线的性质就做了系统的研究(纯几何方法) ,并几乎网罗殆尽,使后人难 以有新的发现阿波罗尼奥斯和欧几里得、阿基米德合称为古希腊三大数学家 【评析】【评析】借助动画演示介绍名称由来,嵌入数学史话,加深认知印象 2广泛应用广泛应用 圆锥曲线不仅在

    9、数学历史发展的过程中熠熠生辉,而且在科学文化的其他领域闪烁光 芒比如,圆锥曲线为开普勒、牛顿、哈雷等数理天文学家研究行星和彗星轨道提供了数学基 础 师:让我们回到本章引言,这一段话的主要内容是什么呢? 生:圆锥曲线的应用 师:那么有哪些方面的应用呢? 请看图片,这是太阳系行星的运行轨迹,是什么曲线? 生:椭圆 师:对!有些彗星的轨迹是椭圆,比如著名的哈雷彗星,这是鹿林彗星,不为我们熟知一 些,轨迹是双曲线它的轨迹是如此的长,图片中显示的只是其中一部分 师:当人造天体被以不同的速度从地球发射出去的时候,它的轨迹分别是圆,椭圆,抛物 线,双曲线这涉及到物理中所讲的三大宇宙速度 师:这是荆门热电厂的

    10、通风塔,同学们见过吗?我们作它的轴截面,取出两侧的轮廓线, 是什么曲线? 生:双曲线 师: 这是橄榄球和探照灯 它们的表面分别是由椭圆和抛物线绕其对称轴旋转一周而来 (显 示旋转动画) 为什么探照灯要做成这种形状呢,只是为了美观吗? 生:应该是为了实用性 师:实际上由于圆锥曲线具有特殊的光学性质,在生产生活中具有广泛的应用请同学们 也来解决一个问题,请看传说: “杰尼西亚的耳朵杰尼西亚的耳朵” :据说,很久以前,意大利西西里岛有一个山洞,叙拉古的暴君杰尼 西亚把一些囚犯关在这个山洞里囚犯们多次密谋逃跑,但每次计划都被杰尼西亚发现起初 囚犯们认为出了内奸,但始终未发现告密者后来他们察觉到囚禁他们

    11、的山洞形状古怪,洞壁 把囚犯们的话都反射到狱卒耳朵里去了,于是囚犯们诅咒这个山洞为 “杰尼西亚的耳朵” 师:其中的奥秘,同学们解开了吗? 生:囚洞的剖面近似于椭圆,犯人聚居的地方恰好在椭圆的一 个焦点附近,狱卒在另一个焦点处偷听 师:很好!恭喜你揭开了这个奥秘!这里是声波,不过声波和光波具有相同的传播性质 【评析】【评析】用传说创设情境,激发学生兴趣,达到引入课题的目的 师:事实上有很多美丽的建筑也与圆锥曲线有关,比如抛物面形天线,双曲线形建筑 师:喷泉是什么形状? 生:抛物线 师:中国国家大剧院美吗? 生:很美 【评析】【评析】了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题

    12、中的作 用,激发起学生学习圆锥曲线的兴趣 3定义探究定义探究 师: 既然到处都有圆锥曲线美丽的身影, 那么我们就有必要了解和研究它们, 如何了解呢? 首先就要知道它的定义那么圆锥曲线的定义是怎样的呢?我们重点看一看椭圆的定义请大 家思考这样的问题: (1)绳子一端固定在平整草地上,另一端拴着一只羊,小羊活动的最大边界是什么曲线? 生:圆 师:圆的定义是什么? 生:平面内到两定点的距离等于定长的点的轨迹 (2)绳子两端都固定在草地上(绳长大于两固定点间的距离) ,绳上套个小环,环上拴一 只羊,小羊活动的最大边界是什么曲线? 师:我们请每组同学相互配合,来画出小羊活动的最大边界 (事先发给学生每组

    13、一块黑板,两个图钉,一根绳子,绳长240cma ; 每组选一位同学 做代表画图,学生画图,老师走动,指导;画完后请三组画的好一些的,2c的取值不同的三 位同学拿着黑板上台展示 ) 【评析】【评析】学生以小组为单位相互配合,动手操作,体验自主、合作的探究理念,印象更加 深刻 师:这三个椭圆,给我们最直观的感受,区别在哪儿? 生:扁平程度不同 师:你觉得椭圆的扁平程度与什么有关? 生:两定点间的距离,绳长 师:很好!我来采访一下,这位同学椭圆画得这么好,有什么诀窍吗? 生:在画的过程中要使得绳子绷直 师:使得绳子绷直,也就是说 生:保证绳长为定值 师:非常好!若细绳长度等于 12 |FF,画出的图

    14、形是什么?不妨在小黑板上试试小于呢? 生:绳长等于 12 |FF,画出的图形是线段 12 FF;小于 12 |FF时,画不出任何图形 师:同学们回答得很好那么大家能类比圆的定义,能给出椭圆的定义吗? (学生归纳,互相补充,教师再汇总) 椭圆的定义:平面内与两个定点 12 ,F F的距离的和等于常数(大于 12 |FF)的点的轨迹叫做 椭圆,两个定点 12 ,F F叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 即 12 | 2 (22 ).M MFMFaac 师:在前面三种用平面截圆锥的过程中,为什么第一种情况得到的截口曲线是椭圆呢? 事实上在 19 世纪,法国数学家 Dandelin 就想到一

    15、种绝妙的方法证明了这个问题他是怎 么做的呢?让我们一起来分享一下: (Dandelin 双球证法)如图,Dandelin 在截面的两侧分别 放置一个球,使它们都与截面相切(切点分别为 12 ,F F),且与 圆锥的侧面相切,两球与圆锥侧面的公共点分别构成圆 1 O和圆 2 O设点 M 是截口曲线上任一点,Dandelin 过M点作圆锥的 一条母线(辅助线)分别交圆 1 O和圆 2 O于,P Q两点 现在我们要证明点M的轨迹是椭圆,用我们刚刚得到的椭 圆的定义,如何来证明呢? 根据定义,只需证明M点到某两个定点的距离之和为常数 即可应该是哪两个定点呢? 是 12 ,F F吗? (学生探讨,说明

    16、12 ,F F为何是定点 ) 师:好!我们只需证明 12 |MFMF为定值即可下面请同学们以小组为单位,开始讨 论(学生分组讨论,老师走动指导) (几分钟后,相关小组的代表上台讲解) 学生讲解图中所示线段长度之间的关系: 1 | |MFMP, 2 | |MFMQ,并说明理由:因为 过球外一点所作球的切线段的长相等故 12 |MFMF_|MPMQ _|PQ 师:线段PQ的长度是常数吗? 生:|PQ是常数 师:为什么? 生:| |PQVPVQ,即为圆台的母线 师: 也就是说, 截口曲线上任意一点到两个定点 12 ,F F的距离的和等于常数 (大于 12 |FF) 这 就说明了截口曲线是椭圆事实上

    17、Dandelin 还利用双球证明了截口曲线是双曲线的情形, 利用 单球证明了截口曲线是抛物线的情形这位卓越的数学家实在是具有非凡的天才 【评析】【评析】介绍历史上数学家的巧妙方法,并引导学生自主思考,自主讲解,不仅强化了椭 圆的定义,更渗透了数学家追求完美的理性精神 4研究方法研究方法 师:让我们再一次回到本章引言,如何来研究圆锥曲线呢? 在古希腊时代是如何研究圆锥 曲线的? 生:几何法 师:后来呢? 生:代数的方法,也就是坐标法 师:是谁发明了坐标系? 生:笛卡尔 (简要介绍笛卡尔的生平) 师:事实上我们以前已经用坐标法研究过直线与圆了,请同学们回顾一下直线方程及方程 的形式 生:点斜式,斜

    18、截式,两点式,截距式,一般式 师:利用直线方程,我们可以研究与直线有关的位置关系与相应的性质比如,我们在初 中的时候,要证明两直线平行用的什么方法? 生:若同位角相等,或内错角相等,则两直线平行 师:建立了平面直角坐标系,得到直线方程后,又是怎么判断两直线平行的呢? 生:若两直线斜率存在且斜率相等,截距不等,则两直线平行 师:圆的方程有哪些形式呢? 生:标准方程和一般方程 师:对如果我们将坐标原点选取在圆心,方程又将如何呢? (演示坐标平移动画) 生: 222 xyr 师:很好!坐标系不同,方程的形式也不同一般来说,形式越简单,越易于我们研究曲 线的性质 师:我们知道,圆的一般方程是一个特殊的

    19、二元二次方程,那么,更一般的形式怎样的? (屏幕显示) 22 0.AxBxyCyDxEyF () (探究)()式方程能否表示我们今天介绍的圆锥曲线的方程? 在以前我们所学的函数 中有没有表示椭圆、双曲线、抛物线的例子? 请同学们相互讨论一下 学生举出反比例函数和二次函数的例子学生答完后显示动画,先显示双曲线 师:这是反比例函数 1 y x ,我们将坐标系旋转一下 (旋转动画)方程还是 1 y x 吗? 生:不是 师:那么方程是怎样的呢?(停顿片刻)我们后面再研究 师:这是二次函数 2 0yaxbxc a(),现在将坐标系平移,如图,方程变为什么形式? 生: 2 yax 师:对,方程的形式变简单

    20、了,对吧? 旋转一下呢?方程是我们后面将要学习再旋 转一下呢? 生: 2 yax 师:当()式方程中的系数满足一定关系的时候,就可以表示不同的圆锥曲线,所以圆 锥曲线也称为二次曲线 【评析】【评析】由复习旧知引出新知,符合学生的认知规律 师: 同学们在先前画椭圆时, 绳长为 4 分米, 其中有同学选取的两图钉间的距离为 2 分米, 那么这个椭圆的方程如何求呢? 第一步该做什么? 生:建立平面直角坐标系 师:如何建立平面直角坐标系呢? 生 1:以两定点 12 ,F F所在直线为x轴,线段 12 F F的中垂线为y轴,建立平面直角坐标系 生 2:以两定点 12 ,F F所在直线为x轴,点 1 F为

    21、坐标原点,建立平面直角坐标系 师:分两大组分别在两种建系的情形下计算 (将全班学生分两组,分别计算,再比较) (算出后老师在每组各选一个写的好一点的到实物投影展示; 然后屏幕显示: 建系, 设点, 列式,化简,方程的形式) 师:大家求出的椭圆方程也满足()方程;如果将具体数值换成2a,2c,椭圆方程的 形式将是什么呢? 留给同学们下去研究 (三)课堂小结(三)课堂小结 今天我们学习了圆锥曲线与方程, 请同学们回顾一下, 本节课我们学习了哪些内容呢? (2-3 个学生归纳) 师:同学们都归纳的很好!本章我们要研究的重点问题是曲线和方程,它们是我们关注的 两个焦点我们要运用的核心方法是坐标法 (四

    22、)课后作业(四)课后作业 1已知ABC 中,BC长为6,周长为16,那么顶点A在怎样的曲线上运动? 建立适当的 平面直角坐标系并推导其方程. 2查找 Dandelin 研究截口曲线分别为双曲线、抛物线的相关资料 三、课后反思 1可取之处可取之处 (1)注重学生的认知规律,教学过程突出“学生为主体,教师为主导”的理念,强调自主、 合作式学习,从而提高了课堂的效率; (2)注重问题的设置梯度,力求做到必要性、准确性、层次性、实效性和逻辑性,以问 题促活动,以问题促探究,促成知识体系的生成与建构; (3)注重数学的人文价值,通过渗透数学史的相关知识,激发学生的学习兴趣和学习动 机,加深学生对数学本质的理解 2改进之处改进之处 个别地方的语言欠准确,如“两焦点之间的线段” ;有些环节处理可以更开放一些,如推 导给定的椭圆方程后,可让学生自我展示;有些设问不免有浅问浅答之嫌,可适度拓展延伸, 为后继学习做好铺垫

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教A版高中数学选修2-1《圆锥曲线起始课》教学设计.doc
    链接地址:https://www.163wenku.com/p-811040.html
    副主任
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库