贵州省遵义市航天高中2024届高考冲刺模拟数学试题含解析.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《贵州省遵义市航天高中2024届高考冲刺模拟数学试题含解析.doc》由用户(知识图书馆)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 贵州省 遵义市 航天 高中 2024 高考 冲刺 模拟 数学试题 解析 下载 _考试试卷_数学_高中
- 资源描述:
-
1、贵州省遵义市航天高中2024届高考冲刺模拟数学试题考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知是平面内互不相等的两个非零向量,且与的夹角为,则的取值范围是( )ABCD2在中,则=( )ABCD3若集合,则ABCD4关于函数有下述四个结论:( )是偶函数;
2、在区间上是单调递增函数;在上的最大值为2; 在区间上有4个零点.其中所有正确结论的编号是( )ABCD5双曲线的一条渐近线方程为,那么它的离心率为( )ABCD6已知,复数,且为实数,则( )ABC3D-37某几何体的三视图如图所示,则该几何体的体积是( )ABCD8已知函数,则的最小值为( )ABCD9已知复数,则的虚部为( )A1BC1D10已知,函数在区间内没有最值,给出下列四个结论:在上单调递增;在上没有零点;在上只有一个零点.其中所有正确结论的编号是( )ABCD11函数在的图象大致为ABCD12函数在的图象大致为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13过直
3、线上一动点向圆引两条切线MA,MB,切点为A,B,若,则四边形MACB的最小面积的概率为_14已知实数x,y满足,则的最大值为_.15设是等比数列的前项的和,成等差数列,则的值为_16利用等面积法可以推导出在边长为a的正三角形内任意一点到三边的距离之和为定值,类比上述结论,利用等体积法进行推导,在棱长为a的正四面体内任意一点到四个面的距离之和也为定值,则这个定值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)解关于的不等式;(2)若函数的图象恒在直线的上方,求实数的取值范围18(12分)如图,在四棱锥PABCD中,底面ABCD为菱形,PA底面AB
4、CD,BAD60,AB=PA4,E是PA的中点,AC,BD交于点O.(1)求证:OE平面PBC;(2)求三棱锥EPBD的体积.19(12分)已知函数.(1)求不等式的解集;(2)若不等式在上恒成立,求实数的取值范围.20(12分)已知函数,.(1)若时,解不等式;(2)若关于的不等式在上有解,求实数的取值范围.21(12分)图1是由矩形ADEB,RtABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,FBC=60,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC平面BCGE;(2)求图2中的二面角BCGA的大小
5、.22(10分)如图,在四棱锥中,底面为菱形,为正三角形,平面平面分别是的中点.(1)证明:平面(2)若,求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:如下图所示,则,因为与的夹角为,即,所以,设,则,在三角形中,由正弦定理得,所以,所以,故选C考点:1向量加减法的几何意义;2正弦定理;3正弦函数性质2、B【解析】在上分别取点,使得,可知为平行四边形,从而可得到,即可得到答案【详解】如下图,在上分别取点,使得,则为平行四边形,故,故答案为B. 【点睛】本题考查了平面向量的线性运算,考查了学
6、生逻辑推理能力,属于基础题3、C【解析】解一元次二次不等式得或,利用集合的交集运算求得.【详解】因为或,所以,故选C.【点睛】本题考查集合的交运算,属于容易题.4、C【解析】根据函数的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结论的编号.【详解】的定义域为.由于,所以为偶函数,故正确.由于,所以在区间上不是单调递增函数,所以错误.当时,且存在,使.所以当时,;由于为偶函数,所以时,所以的最大值为,所以错误.依题意,当时,所以令,解得,令,解得.所以在区间,有两个零点.由于为偶函数,所以在区间有两个零点.故在区间上有4个零点.所以正确.综上所述,正确的结论序号为.故选:C【点睛】
7、本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题.5、D【解析】根据双曲线的一条渐近线方程为,列出方程,求出的值即可.【详解】双曲线的一条渐近线方程为,可得,双曲线的离心率.故选:D.【点睛】本小题主要考查双曲线离心率的求法,属于基础题.6、B【解析】把和 代入再由复数代数形式的乘法运算化简,利用虚部为0求得m值【详解】因为为实数,所以,解得.【点睛】本题考查复数的概念,考查运算求解能力.7、A【解析】观察可知,这个几何体由两部分构成,:一个半圆柱体,底面圆的半径为1,高为2;一个半球体,半径为1,按公式计算可得体积。【详解】设半圆柱体体积为,半球体
8、体积为,由题得几何体体积为,故选A。【点睛】本题通过三视图考察空间识图的能力,属于基础题。8、C【解析】利用三角恒等变换化简三角函数为标准正弦型三角函数,即可容易求得最小值.【详解】由于,故其最小值为:.故选:C.【点睛】本题考查利用降幂扩角公式、辅助角公式化简三角函数,以及求三角函数的最值,属综合基础题.9、A【解析】分子分母同乘分母的共轭复数即可.【详解】,故的虚部为.故选:A.【点睛】本题考查复数的除法运算,考查学生运算能力,是一道容易题.10、A【解析】先根据函数在区间内没有最值求出或.再根据已知求出,判断函数的单调性和零点情况得解.【详解】因为函数在区间内没有最值.所以,或解得或.又
展开阅读全文