2022-2023学年云南省保山市一中高三适应性调研考试数学试题含解析.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2022-2023学年云南省保山市一中高三适应性调研考试数学试题含解析.doc》由用户(知识图书馆)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 云南省 保山市 一中 适应性 调研 考试 数学试题 解析 下载 _模拟试题_高考专区_数学_高中
- 资源描述:
-
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1复数,是虚数单位,则下列结论正确的是AB的共轭复数为C的实部与虚部之和为1D在复平面内的对应点位于第一象限2若实数满足的约束条件,则的取值范围是( )ABCD3若平面向量,满足,则
2、的最大值为( )ABCD4在中,内角的平分线交边于点,则的面积是( )ABCD5已知抛物线:,点为上一点,过点作轴于点,又知点,则的最小值为( )ABC3D56已知函数,若不等式对任意的恒成立,则实数k的取值范围是( )ABCD7已知集合,则中元素的个数为( )A3B2C1D08已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为( )ABCD9已知抛物线经过点,焦点为,则直线的斜率为( )ABCD10已知函数()的最小值为0,则( )ABCD11我国南北朝时的数学著作张邱建算经有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,
3、下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金( )A多1斤B少1斤C多斤D少斤12若,点C在AB上,且,设,则的值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系中,点在单位圆上,设,且若,则的值为_.14如图,在ABC中,AB4,D是AB的中点,E在边AC上,AE2EC,CD与BE交于点O,若OBOC,则ABC面积的最大值为_15若函数,则使得不等式成立的的取值范围为_.16已知实数满足(为虚数单位),则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演
4、算步骤。17(12分)在平面直角坐标系xOy中,曲线l的参数方程为(为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为r=4sinq.(1)求曲线C的普通方程;(2)求曲线l和曲线C的公共点的极坐标.18(12分)在平面直角坐标系中,曲线的参数方程为(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线与曲线的普通方程,并求出直线的倾斜角;(2)记直线与轴的交点为是曲线上的动点,求点的最大距离.19(12分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆的极坐
5、标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.20(12分)在平面直角坐标系中,直线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求直线的普通方程与曲线的直角坐标方程;(2)若射线与和分别交于点,求21(12分)如图,四棱锥中,平面平面,若,四边形是平行四边形,且.()求证:;()若点在线段上,且平面,求二面角的余弦值.22(10分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)设点,若直线与曲线相交于、两点,
6、求的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用复数的四则运算,求得,在根据复数的模,复数与共轭复数的概念等即可得到结论【详解】由题意,则,的共轭复数为,复数的实部与虚部之和为,在复平面内对应点位于第一象限,故选D【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为2、B【解析】根据所给不等式组,画出不等式表示
7、的可行域,将目标函数化为直线方程,平移后即可确定取值范围.【详解】实数满足的约束条件,画出可行域如下图所示:将线性目标函数化为,则将平移,平移后结合图像可知,当经过原点时截距最小,;当经过时,截距最大值,所以线性目标函数的取值范围为,故选:B.【点睛】本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题.3、C【解析】可根据题意把要求的向量重新组合成已知向量的表达,利用向量数量积的性质,化简为三角函数最值.【详解】由题意可得:,故选:C【点睛】本题主要考查根据已知向量的模求未知向量的模的方法技巧,把要求的向量重新组合成已知向量的表达是本题的关键点.本题属中档题.4、B【解析】利
8、用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【详解】为的角平分线,则.,则,在中,由正弦定理得,即,在中,由正弦定理得,即,得,解得,由余弦定理得,因此,的面积为.故选:B.【点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.5、C【解析】由,再运用三点共线时和最小,即可求解.【详解】.故选:C【点睛】本题考查抛物线的定义,合理转化是本题的关键,注意抛物线的性质的灵活运用,属于中档题6、A【解析】先求出函数在处的切线方程,在同一直角坐标系内画出函数和的图象,利用数形结合进行求解即可.【详
展开阅读全文