2022-2023学年浙江省丽水、湖州、衢州市高三第一次模拟考试数学试卷含解析.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2022-2023学年浙江省丽水、湖州、衢州市高三第一次模拟考试数学试卷含解析.doc》由用户(知识图书馆)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 浙江省 丽水 湖州 衢州市 第一次 模拟考试 数学试卷 解析 下载 _模拟试题_高考专区_数学_高中
- 资源描述:
-
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,在中,且,则( )A1BCD2复数的虚部为( )ABC2D3已知命题p:若,则;命题q:,使得”,则以下命题为真命题的是( )ABCD4已知方程表示的曲线为的图象,对于函数有如下结论:
2、在上单调递减;函数至少存在一个零点;的最大值为;若函数和图象关于原点对称,则由方程所确定;则正确命题序号为( )ABCD5下列几何体的三视图中,恰好有两个视图相同的几何体是( )A正方体B球体C圆锥D长宽高互不相等的长方体6函数的图象向右平移个单位得到函数的图象,并且函数在区间上单调递增,在区间上单调递减,则实数的值为( )ABC2D7已知函数,若对任意,都有成立,则实数的取值范围是( )ABCD8已知集合A=y|y=|x|1,xR,B=x|x2,则下列结论正确的是( )A3A B3B CAB=B DAB=B9已知实数x,y满足,则的最小值等于( )ABCD10函数(其中,)的图象如图,则此函
3、数表达式为( )ABCD11已知,则下列不等式正确的是( )ABCD12己知集合,则( )ABCD 二、填空题:本题共4小题,每小题5分,共20分。13函数的定义域为_.14已知中,点是边的中点,的面积为,则线段的取值范围是_.15已知函数,若,则_.16西周初数学家商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年.我们把可以构成一个直角三角形三边的一组正整数称为勾股数.现从3,4,5,6,7,8,9,10,11,12,13这11个数中随机抽取3个数,则这3个数能构成勾股数的概率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤
4、。17(12分)已知函数(mR)的导函数为(1)若函数存在极值,求m的取值范围;(2)设函数(其中e为自然对数的底数),对任意mR,若关于x的不等式在(0,)上恒成立,求正整数k的取值集合18(12分)为贯彻十九大报告中“要提供更多优质生态产品以满足人民日益增长的优美生态环境需要”的要求,某生物小组通过抽样检测植物高度的方法来监测培育的某种植物的生长情况现分别从、三块试验田中各随机抽取株植物测量高度,数据如下表(单位:厘米): 组组组假设所有植株的生长情况相互独立从、三组各随机选株,组选出的植株记为甲,组选出的植株记为乙,组选出的植株记为丙(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙
5、的高度的概率;(3)表格中所有数据的平均数记为从、三块试验田中分别再随机抽取株该种植物,它们的高度依次是、(单位:厘米)这个新数据与表格中的所有数据构成的新样本的平均数记为,试比较和的大小(结论不要求证明)19(12分)已知函数,.(1)讨论函数的单调性;(2)已知在处的切线与轴垂直,若方程有三个实数解、(),求证:.20(12分)某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量(单位:亿元)对年销售额(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:,其中均为常数,为自然对数的底数现该公司收集了近12年的年研发资金投入量和年销售额的数据,并对这些数据作了初步
6、处理,得到了右侧的散点图及一些统计量的值令,经计算得如下数据:(1)设和的相关系数为,和的相关系数为,请从相关系数的角度,选择一个拟合程度更好的模型;(2)(i)根据(1)的选择及表中数据,建立关于的回归方程(系数精确到0.01);(ii)若下一年销售额需达到90亿元,预测下一年的研发资金投入量是多少亿元? 附:相关系数,回归直线中斜率和截距的最小二乘估计公式分别为:,; 参考数据:,21(12分)如图,四边形是边长为3的菱形,平面.(1)求证:平面;(2)若与平面所成角为,求二面角的正弦值.22(10分)如图1,四边形是边长为2的菱形,为的中点,以为折痕将折起到的位置,使得平面平面,如图2.
7、(1)证明:平面平面;(2)求点到平面的距离.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题可,所以将已知式子中的向量用表示,可得到的关系,再由三点共线,又得到一个关于的关系,从而可求得答案【详解】由,则,即,所以,又共线,则.故选:C【点睛】此题考查的是平面向量基本定理的有关知识,结合图形寻找各向量间的关系,属于中档题.2、D【解析】根据复数的除法运算,化简出,即可得出虚部.【详解】解:=,故虚部为-2.故选:D.【点睛】本题考查复数的除法运算和复数的概念.3、B【解析】先判断命题的真假,进而根据复合命题真假的
8、真值表,即可得答案.【详解】,因为,所以,所以,即命题p为真命题;画出函数和图象,知命题q为假命题,所以为真.故选:B. 【点睛】本题考查真假命题的概念,以及真值表的应用,解题的关键是判断出命题的真假,难度较易.4、C【解析】分四类情况进行讨论,然后画出相对应的图象,由图象可以判断所给命题的真假性.【详解】(1)当时,此时不存在图象;(2)当时,此时为实轴为轴的双曲线一部分;(3)当时,此时为实轴为轴的双曲线一部分;(4)当时,此时为圆心在原点,半径为1的圆的一部分;画出的图象,由图象可得:对于,在上单调递减,所以正确;对于,函数与的图象没有交点,即没有零点,所以错误;对于,由函数图象的对称性
9、可知错误;对于,函数和图象关于原点对称,则中用代替,用代替,可得,所以正确.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的图象与性质,函数的零点概念,考查了数形结合的数学思想.5、C【解析】根据基本几何体的三视图确定【详解】正方体的三个三视图都是相等的正方形,球的三个三视图都是相等的圆,圆锥的三个三视图有一个是圆,另外两个是全等的等腰三角形,长宽高互不相等的长方体的三视图是三个两两不全等的矩形故选:C【点睛】本题考查基本几何体的三视图,掌握基本几何体的三视图是解题关键6、C【解析】由函数的图象向右平移个单位得到,函数在区间上单调递增,在区间上单调递减,可得时,取得最大值,即,当时,
10、解得,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出,根据函数在区间上单调递增,在区间上单调递减可得时,取得最大值,求解可得实数的值.7、D【解析】先将所求问题转化为对任意恒成立,即得图象恒在函数图象的上方,再利用数形结合即可解决.【详解】由得,由题意函数得图象恒在函数图象的上方,作出函数的图象如图所示过原点作函数的切线,设切点为,则,解得,所以切线斜率为,所以,解得.故选:D.【点睛】本题考查导数在不等式恒成立中的应用,考查了学生转化与化归思想以及数形结合的思想,是一道中档题.8、C【解析】试题分析:集合 考点:集
展开阅读全文