2024徐州中考数学二轮重点专题研究 第26课时 圆的基本性质(课件).pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2024徐州中考数学二轮重点专题研究 第26课时 圆的基本性质(课件).pptx》由用户(znzjthk)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024徐州中考数学二轮重点专题研究 第26课时 圆的基本性质课件 2024 徐州 中考 数学 二轮 重点 专题研究 26 课时 基本 性质 课件 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、 徐州徐州近近年真题及拓展年真题及拓展1 考点精讲考点精讲2 重难点分层练重难点分层练3圆的基本概念圆的基本概念徐州近徐州近年真题及拓展年真题及拓展1命题点命题点1.如图如图,AB为为O的直径,点的直径,点C、D在在O 上,上,AC与与OD交于点交于点E,AEEC,OEED.连接连接BC、CD.第1题图求证:求证:(1)AOECDE;证明证明:(1)在在AOE和和CDE中中,AOECDE(SAS);(3分分),AECEOEADECOEDE 第1题图(2)四边形四边形OBCD是菱形是菱形(2)由由(1)可得可得AOCD,BACACD,ABCD.AB是是O的直径的直径,AOOBCD.四边形四边形O
2、BCD是平行四边形是平行四边形OBOD,四边形四边形OBCD是菱形是菱形(8分分)第1题图2命题点命题点圆周角定理及其推论的相关计算圆周角定理及其推论的相关计算2.如图如图,点点A、B、C在在O上上,AOB72,则则ACB等于等于()A.28 B.54 C.18 D.36第2题图D变 式 训 练变 式 训 练3.如图,在如图,在O中,中,OA、OB为半径为半径,AB、AC、BC为弦,若为弦,若OAB70,则则C的度数为的度数为()A.40 B.70 C.20 D.30第3题图 C变 式 训 练变 式 训 练4.如图,点如图,点A,B,C在在O上,上,BCOA,A20,则,则B的度数的度数为为(
3、)A.10 B.20 C.40 D.50第4题图 C5.如图如图,AB是是O的直径的直径,点点C、D在在O上上,若若ADC58,则则BAC_.第5题图323命题点命题点垂径定理的相关计算垂径定理的相关计算6.如图如图,AB为为O的直径的直径,弦弦CDAB,垂足为垂足为P,若若CD8,OP3,则则O的半径为的半径为()A.10 B.8 C.5 D.3第6题图 C7.如图,如图,AB是是O的直径,弦的直径,弦CDAB,垂足为,垂足为E,连接,连接AC.若若CAB22.5,CD8 cm,则,则O的半径为的半径为_cm.第7题图4 2变 式 训 练变 式 训 练8.如图如图,A,B,C是半径为是半径为
4、2的的O上的点,弦上的点,弦BC2 ,则则BAC的度数是的度数是()A.30 B.45 C.60 D.70第8题图 C39.如图如图,AB是是O的直径的直径,CD是弦是弦,且且CDAB,AC8,BC6.则则sinABD_.第9题图454命题点命题点正多边形与圆正多边形与圆10.如图如图,A、B、C、D为一个正多边形的顶点为一个正多边形的顶点,O为正多边形的中心,为正多边形的中心,若若ADB18,则这个正多边形的边数为则这个正多边形的边数为_第10题图1011.如图如图,A、B、C、D为一个外角为为一个外角为40的正多边形的顶点,若的正多边形的顶点,若O为正为正多边形的中心,则多边形的中心,则O
5、AD_.第11题图30圆的基本性质垂径定理及其延伸正多边形与圆圆内接四边形的性质圆周角定理及其推论定理推论三角形的外接圆外接圆圆心(外心)性质角度关系圆的基本概念和性质弦和直径弧对称性弦、弧、圆心角的关系圆心角圆周角考点精讲考点精讲【对接教材对接教材】苏科苏科:九上第九上第2章章P38P62,P77P82圆的圆的基本基本概念概念和性和性质质弦和直径:连接圆上任意两点的线段叫做弦弦和直径:连接圆上任意两点的线段叫做弦(如图如图中的线段中的线段BC),经过圆心经过圆心的弦叫做直径的弦叫做直径(如图如图中的线段中的线段AB)弧:圆上任意两点间的部分叫做圆弧,简称弧圆的任意一条直径的两个端弧:圆上任意
6、两点间的部分叫做圆弧,简称弧圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆大于半圆的弧称为优弧点把圆分成两条弧,每条弧都叫做半圆大于半圆的弧称为优弧(如图中如图中的的 ),小于半圆的弧称为劣弧,小于半圆的弧称为劣弧(如图如图 中的中的)圆心角:顶点在圆心的角叫做圆心角圆心角:顶点在圆心的角叫做圆心角(如图中的如图中的AOC)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角(如图中的如图中的ABC)对称性:圆既是轴对称图形,又是中心对称图形,任何一条直径所在的直线对称性:圆既是轴对称图形,又是中心对称图形,任何一条直径所在的直线
7、都是它的对称轴,都是它的对称轴,_是它的对称中心是它的对称中心图BACBC圆心圆心弦、弧、弦、弧、圆心角圆心角的关系的关系 (如图如图)在同圆或等圆中,相等的圆心角所对的弧在同圆或等圆中,相等的圆心角所对的弧_,所对的弦,所对的弦_,即若,即若AOB_,则,则 ,AB=CD推论推论1.在同圆或等圆中在同圆或等圆中,如果两个圆心角、两条弧、两条弦如果两个圆心角、两条弧、两条弦中有一中有一 组量相等组量相等,那么它们所对应的其余各组量都相等那么它们所对应的其余各组量都相等 2.圆心角的度数与它所对的弧的度数相等圆心角的度数与它所对的弧的度数相等 图ABCD相等相等相等相等COD圆的圆的基本基本概念
8、概念和性和性质质圆周角圆周角定理及定理及其推论其推论定理:圆周角的度数等于它所对弧上的圆心角度数的定理:圆周角的度数等于它所对弧上的圆心角度数的_,同弧或等弧,同弧或等弧推论:直径所对的圆周角是推论:直径所对的圆周角是_,90的圆周角所对的弦是的圆周角所对的弦是_ 满分技法满分技法一条弦对着两条弧一条弦对着两条弧,其中一条弧所对的圆周角与另一条弧其中一条弧所对的圆周角与另一条弧所对的圆周角互补所对的圆周角互补;一条弧只对着一个圆心角一条弧只对着一个圆心角,但却对着无但却对着无数个圆周角数个圆周角.一半一半相等相等直角直角垂径定垂径定理及其理及其延伸延伸 (*选学选学)定理:垂直于弦的直径定理:
展开阅读全文