2021年高二数学上学期期中测试卷03(人教A版)(理).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年高二数学上学期期中测试卷03(人教A版)(理).docx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 年高 数学 上学 期期 测试 03 人教 下载 _考试试卷_数学_高中
- 资源描述:
-
1、2020-2021 学年高二数学上学期期中测试卷 03(人教 A 版) (理) (本卷满分 150 分,考试时间 120 分钟) 测试范围:人教 A 版必修 5 全册+选修 2-1 第一章、第二章 一、单项选择题:本题共 12 小题,每小题 5 分,共 60 分在每小题给出的四个选项中,只有一个选项是 符合题目要求的. 1已知命题p: 2 0, x xex ,则 p 为( ) A 0 0 x, 0 2 0 x ex B 0 0 x, 0 2 0 x ex C0 x , 2x ex D0 x , 2x ex 【答案】A 【解析】因为命题p: 2 0, x xex , 所以 p 为 0 0 x,
2、0 2 0 x ex, 故选 A 2关于 x的不等式 2 450 xx的解集为( ) A( 5,1) B( 1,5) C( , 5)(1,) D(, 1)(5,) 【答案】B 【解析】不等式可化为 2 450 xx,有( 5)(1)0 xx , 故不等式的解集为( 1,5). 故选 B 3在等差数列 n a中, 8 24a , 16 8a,则 24 a( ) A24 B16 C8 D0 【答案】C 【解析】 n a是等差数列, 82416 2aaa+=, 24 8a=-. 故选 C. 4“点 M在曲线 2 4xy上”是“点 M 的坐标满足方程2xy”的( ) A充分不必要条件 B必要不充分条件
3、 C充要条件 D既不充分也不必要条件 【答案】B 【解析】若点 M 在曲线 2 4xy上,则2xy; 当点 M 的坐标满足方程2xy时,必有 2 4xy,即点 M 在曲线 2 4xy上, 故“点 M 在曲线 2 4xy上”是“点 M 的坐标满足方程2xy”的必要不充分条件 故选 B 5在ABC中, 9,10,60abA,则此三角形解的情况是( ) A一解 B两解 C一解或两解 D无解 【答案】B 【解析】因为sin5 3bAab,所以有两解. 故选 B. 6已知等比数列 n a, 10 a, 30 a是方程 2 10160 xx的两实根,则 20 a等于( ) A4 B4 C8 D8 【答案】
4、A 【解析】因为 10 a, 30 a是方程 2 10160 xx的两实根, 由根与系数的关系可得 1030 10aa , 1030 16aa,可知 10 0a, 30 0a 因为 n a是等比数列,所以 2 201030 16aaa, 因为 10 2010 aaq ,所以 20 0a, 所以 20 4a, 故选 A 7在ABC中,角 A、B、C 的对边分别为a、b、c,若 222 ()tan3acbBac,则角 B的值为( ) A 6 B 3 C 6 或 5 6 D 3 或 2 3 【答案】D 【解析】 222 ()tan3acbBac, 由余弦定理可得 222 cos 2 acb B ac
5、 3 costansin 2 BBB 3 B 或 2 3 故选 D 8双曲线 22 2 :1(0) 36 xy Ca a 左、右焦点分别为 12 ,FF,一条渐近线与直线430 xy垂直,点M在 C上,且 2 14MF ,则 1 |MF ( ) A6或 30 B6 C30 D6或 20 【答案】C 【解析】 双曲线 22 2 :1(0) 36 xy Ca a 左、 右焦点分别为 1 F, 2 F, 一条渐近线与直线430 xy垂直, 可得 63 4a ,解得8a , 点M在C上, 2 | 14216MFa ,所以M在双曲线的右支上, 则 12 | 2| 30MFaMF 故选C 9已知实数x,y
6、满足不等式组 40, 0, 1, xy xy y ,则23zxy的最小值为( ) A0 B2 C3 D5 【答案】D 【解析】不等式组表示的可行域如图所示, 由23zxy,得 2 33 z yx , 作出直线 2 3 yx ,即直线230 xy, 将此直线向下平移过点C时,直线在y轴上的截距最小,此时z取得最小值, 由 1 0 y xy ,得 1 1 x y ,即 ( 1, 1)C , 所以23zxy的最小值为2 ( 1)3 ( 1)5 , 故选 D 10已知数列 n a满足 1 2a , * 1 1() 1 2 n n anN a ,则 2020 a( ) A2 B 1 3 C 1 2 D3
7、 【答案】D 【解析】由已知得 1 2a , 2 21 1 123 a , 3 21 1 1 2 1 3 a , 4 2 13 1 1 2 a , 5 2 12 1 3 a , 可以判断出数列 n a是以 4为周期的数列,故 2020505 44 3aaa , 故选 D. 11在锐角三角形ABC中, 角A、B、C的对边分别为a、b、c,若 222 3acac b , 则c o ss i nAC 的取值范围为( ) A 3 3 , 22 B 2 ,2 2 C 1 3 , 2 2 D 3,2 【答案】A 【解析】由 222 3acacb 和余弦定理得 222 3 cos 22 acb B ac ,
8、又0,B, 6 B . 因为三角形ABC为锐角三角形,则 0 2 0 2 A C ,即 0 2 5 0 62 A A ,解得 32 A , 13 cossincossincossincoscossin 6622 ACAAAAAAA 33 sincos3sin 223 AAA , 32 A ,即 25 336 A ,所以, 13 sin 232 A , 则 33 cossin 22 AC,因此,cos sinAC的取值范围是 3 3 , 22 . 故选 A. 12已知椭圆的方程为 2 2 2 11 x ya a ,上顶点为A,左顶点为B,设P为椭圆上一点,则PAB面积 的最大值为 21 .若已知
9、 3,0 ,3,0MN,点Q为椭圆上任意一点,则 14 QNQM 的最小值为 ( ) A2 B3 2 2 C3 D 9 4 【答案】D 【解析】在椭圆 2 2 2 11 x ya a 中, 点0,1 ,0ABa,则 2 1ABa, 1 AB k a , 直线AB的方程为 1 1yx a ,设与直线AB平行的椭圆的切线方程为 1 yxb a , 由方程组 2 2 2 1 1 yxb a x y a 得 2222 220 xabxa ba , 由 2 222 24 20aba ba ,得 2 2b ,则2b , 两平行线间的距离 22 2121 1 1 1 a d a a , 则PAB面积的最大值
10、为 1 21 2 AB d ,得2a, 24QMQNa, 14114 4 QMQN QNQMQNQM 1 1 44 QMQN QNQM 19 12 444 QMQN QNQM , 当且仅当2QMQN时取等号. 二、填空题:本题共 4 小题,每小题 5 分,共 20 分. 13设ABC内角 A,B,C所对应的边分别为 a,b,c.已知(4 )coscosacBbC ,则cos B_ 【答案】 1 4 【解析】由(4)coscosacBbC及正弦定理, 得(4sinsin)cossincosACBBC, 即4sincossin()sinABBCA,因为(0, )A,sin0A, 所以 1 cos
展开阅读全文