2025高考数学一轮复习-7.2.3-排列的应用(课件).pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2025高考数学一轮复习-7.2.3-排列的应用(课件).pptx》由用户(znzjthk)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课件 2025 高考 数学 一轮 复习 7.2 排列 应用 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、1.进一步加深对排列概念的理解.2.掌握几种有限制条件的排列,能应用排列数公式解决简单的实 际问题.学 习 目 标随堂练习对点练习一、无限制条件的排列问题二、“相邻”与“不相邻”问题三、元素“在”与“不在”问题内容索引四、定序问题一、无限制条件的排列问题例1(1)有5个不同的科研小课题,从中选3个由高二(6)班的3个学习兴趣小组进行研究,每组一个课题,共有多少种不同的安排方法?解从5个不同的科研小课题中选出3个,由3个学习兴趣小组进行研究,对应于从5个不同元素中取出3个元素的一个排列.(2)12名选手参加校园歌手大奖比赛,比赛设一等奖、二等奖、三等奖各一名,每人最多获得一种奖项,共有多少种不同
2、的获奖情况?跟踪训练1(1)将3张不同电影票分给10人中的3人,每人1张,则共有_种不同的分法.解析问题相当于从10张电影票中选出3张排列起来,这是一个排列问题.故不同分法的种数为720(2)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,不同的选法共有_种.60二、“相邻”与“不相邻”问题例2有3名男生,4名女生,共7个人站成一排,在下列情况下,各有多少种不同的站法.(1)男、女各站在一起;(2)男生必须排在一起;解(捆绑法)把所有男生看作一个元素,与4名女生组成5个元素全排列,(3)男生不能排在一起;(4)男生互不相邻,且女生也互不相邻.跟踪训练2(1)5人站成一排,
3、甲、乙两人之间恰有1人的不同站法的种数为A.18 B.24 C.36 D.48(2)永定土楼,位于中国东南沿海的福建省龙岩市,是世界上独一无二的神奇的山区民居建筑,是中国古建筑的一朵奇葩,并成功列入世界遗产名录.它历史悠久、风格独特,规模宏大、结构精巧.土楼具体有圆形、方形、五角形、八角形、日字形、回字形、吊脚楼等类型.现有某大学建筑系学生要重点对这七种主要类型的土楼依次进行调查研究.要求调查顺序中,圆形要排在第一个或最后一个,方形、五角形相邻,则共有_种不同的排法.A.480 B.240C.384 D.1 440解析当圆形排在第一个,因为方形、五角形相邻,综上,圆形要排在第一个或最后一个,方
4、形、五角形相邻,则共有480种不同的排法.三、元素“在”与“不在”问题例3从6名运动员中选出4人参加4100 m接力赛,求满足下列条件的参赛方法数:(1)甲不能跑第一棒和第四棒;解方法一(元素分析法)从人(元素)的角度考虑,优先考虑甲,分以下两类:(2)甲不能跑第一棒,乙不能跑第四棒.解方法一(元素分析法)从人(元素)的角度考虑,优先考虑乙,可分为如下两类:第一类,乙参加比赛,此时优先考虑乙,分为两种情况:此时按甲是否参赛,又分为两类:由分类计数原理,得乙参加比赛共有6096156(种)方法.综上,共有15696252(种)参赛方法.方法二(位置分析法)从位置的角度考虑,第一棒与第四棒为特殊位
5、置,优先考虑第一棒,分为如下两类:跟踪训练3六人按下列要求站一横排,分别有多少种不同的站法?(1)甲只能在中间或两端;(2)甲、乙必须在两端;(3)甲不在最左端,乙不在最右端.四、定序问题例4某电视节目的主持人邀请年龄互不相同的5位嘉宾逐个出场亮相.(1)其中有3位老者要按年龄从大到小的顺序出场,出场顺序有多少种?(2)3位老者与2位年轻人都要分别按从大到小的顺序出场,顺序有多少种?跟踪训练4五个人排成一排,求满足下列条件的不同排列各有多少种.(1)A,B,C三人左中右顺序不变(不一定相邻);(2)A在B的左边且C在D的右边(可以不相邻).随堂练习1.某天上午要排语文、数学、体育、计算机四节课
6、,其中体育不排在第一节,那么这天上午课程表的不同排法共有A.6种 B.9种 C.18种 D.24种123412342.6名同学排成一排,其中甲、乙必须排在一起的不同排法共有A.720种 B.360种 C.240种 D.120种12343.用1,2,3,4,5,6,7组成没有重复数字的七位数,若1,3,5,7的顺序一定,则有_个七位数符合条件.解析若1,3,5,7的顺序不定,21012344.两家夫妇各带一个小孩一起去公园游玩,购票后排队依次入园.为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为_.24解析分3步进行分析,则共有22624(种)排法.对
7、点练习基础巩固12345678910 11 12 13 14 151.6位学生排成两排,每排3人,则不同的排法种数为A.36 B.120 C.240 D.720162.6位选手依次演讲,其中选手甲不排在第一个也不排在最后一个演讲,则不同的演讲次序共有A.240种 B.360种 C.480种 D.720种12345678910 11 12 13 14 15 1612345678910 11 12 13 14 15 163.(多选)若3男3女排成一排,则下列说法错误的是A.共计有720种不同的排法B.男生甲排在两端的共有120种排法C.男生甲、乙相邻的排法总数为120种D.男女生相间排法总数为72
展开阅读全文