2025高考数学一轮复习-7.1.2-分类计数原理与分步计数原理的综合应用(课件).pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2025高考数学一轮复习-7.1.2-分类计数原理与分步计数原理的综合应用(课件).pptx》由用户(znzjthk)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课件 2025 高考 数学 一轮 复习 7.1 分类 计数 原理 分步 综合 应用 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、1.进一步理解分类计数原理和分步计数原理的区别.2.会正确应用这两个计数原理计数.学 习 目 标随着人们生活水平的提高,车辆拥有量迅速增长,汽车牌号仅用一个字母和数字表示已经不能满足需求,再加上许多车主还希望车牌号“个性化”,因此,汽车号码需要进行扩容,这样就需要“数出”某种方案下的所有号码数,号码的个数是如何进行计算的呢?导 语随堂练习对点练习一、组数问题二、占位模型中标准的选择三、涂色与种植问题内容索引一、组数问题例1用0,1,2,3,4五个数字.(1)可以排成多少个三位数字的电话号码?解三位数字的电话号码,首位可以是0,数字也可以重复,每个位置都有5种排法,共有55553125(个).(
2、2)可以排成多少个三位数?解三位数的首位不能为0,但可以有重复数字,首先考虑首位的排法,除0外共有4种方法,第二、三位可以排0,因此,共有455100(个).(3)可以排成多少个能被2整除的无重复数字的三位数?解被2整除的数即偶数,末位数字可取0,2,4,因此,可以分两类,一类是末位数字是0,则有4312(种)排法;一类是末位数字不是0,则末位有2种排法,即2或4,再排首位,因0不能在首位,所以有3种排法,十位有3种排法,因此有23318(种)排法.因此有121830(种)排法.即可以排成30个能被2整除的无重复数字的三位数.延伸探究由本例中的五个数字可组成多少个无重复数字的四位奇数?解完成“
3、组成无重复数字的四位奇数”这件事,可以分四步:第一步定个位,只能从1,3中任取一个,有2种方法;第二步定首位,从1,2,3,4中除去用过的一个,从剩下的3个中任取一个,有3种方法;第三步,第四步把剩下的包括0在内的3个数字先排百位有3种方法,再排十位有2种方法.由分步计数原理知共有233236(个).反思感悟对于组数问题,应掌握以下原则(1)明确特殊位置或特殊数字,是我们采用“分类”还是“分步”的关键.一般按特殊位置(末位或首位)分类,分类中再按特殊位置(特殊元素)优先的策略分步完成,如果正面分类较多,可采用间接法求解.(2)要注意数字“0”不能排在两位数或两位数以上的数的最高位.跟踪训练1(
4、1)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为A.24 B.18 C.12 D.6解析由于题目要求是奇数,那么对于此三位数可以分成两种情况:奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析(3种情况),之后十位(2种情况),最后百位(2种情况),共12种;如果是第二种偶奇奇的情况:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种,因此总共有12618(种)情况.(2)用0,1,9十个数字,可以组成有重复数字的三位数的个数为A.243 B.252 C.261 D.279解析0,1,2,9共能组成91010900(个)
5、三位数,其中无重复数字的三位数有998648(个),有重复数字的三位数有900648252(个).二、占位模型中标准的选择例2(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?解要完成的是“4名同学每人从三个项目中选一项报名”这件事,因为每人必报一项,4人都报完才算完成,所以按人分步,且分为四步,又每人可在三项中选一项,选法为3种,所以共有333381(种)报名方法.(2)4名同学选报跑步、跳高、跳远三个项目,每项限报一人,且每人至多报一项,共有多少种报名方法?解每项限报一人,且每人至多报一项,因此跑步项目有4种选法,跳高项目有3种选法,跳远项目只有2种选法.根据分步
6、计数原理,可得不同的报名方法有43224(种).(3)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?解要完成的是“三个项目冠军的获取”这件事,因为每项冠军只能有一人获得,三项冠军都有得主,这件事才算完成,所以应以“确定三项冠军得主”为线索进行分步,而每项冠军的得主有4种可能结果,所以共有44464(种)可能的结果.跟踪训练2(1)高二年级的三个班去甲、乙、丙、丁四个工厂参观学习,去哪个工厂可以自由选择,甲工厂必须有班级去,则不同的参观方案有A.16种 B.18种 C.37种 D.48种解析根据题意,若不考虑限制条件,每个班级都有4种选择,共有44464(种)方案,其中工厂甲没有班
7、级去,即每个班都选择了其他三个工厂,此时每个班级都有3种选择,共有33327(种)方案,则符合条件的有642737(种).(2)甲、乙、丙、丁四人各写一张贺卡,放在一起,再各取一张不是自己的贺卡,则不同取法的种数有_种.解析不妨由甲先来取,共3种取法,而甲取到谁的将由谁在甲取后第二个来取,共3种取法,余下来的人,都只有1种选择,所以不同取法共有33119(种).9三、涂色与种植问题例3(1)如图所示,有A,B,C,D四个区域,用红、黄、蓝三种颜色涂色,要求任意两个相邻区域的颜色各不相同,共有_种不同的涂法.18解析若A,C涂色相同,则A,B,C,D可涂颜色的种数依次是3,2,1,2,则有321
8、212(种)不同的涂法.若A,C涂色不相同,则A,B,C,D可涂颜色的种数依次是3,2,1,1,则有32116(种)不同的涂法.所以根据分类计数原理,共有12618(种)不同的涂法.(2)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,则有_种不同的种植方法.解析方法一(直接法)若黄瓜种在第一块土地上,则有326(种)不同的种植方法.同理,黄瓜种在第二块、第三块土地上,均有326(种)不同的种植方法.故不同的种植方法共有6318(种).方法二(间接法)从4种蔬菜中选出3种,种在三块地上,有43224(种),其中不种黄瓜有3216(种),故共有24
9、618(种)不同的种植方法.18跟踪训练3(1)如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两个端点异色,如果只有5种颜色可供使用,则不同染色方法的种数为_.420解析按照SABCD的顺序进行染色,按照A,C是否同色分类:第一类,A,C同色,则有54313180(种)不同的染色方法.第二类,A,C不同色,则有54322240(种)不同的染色方法.根据分类计数原理,共有180240420(种)不同的染色方法.(2)如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一种颜色,共有4种颜色可供选择,则不同的着色方法共有_种(用数字作答).72解析当使用4种颜色时
10、,先着色第1区域,有4种方法,剩下3种颜色涂其他4个区域,即有1种颜色涂相对的2块区域,有32212(种),由分步计数原理得,共有41248(种).当使用3种颜色时,从4种颜色中选取3种,有4种方法,先着色第1区域,有3种方法,剩下2种颜色涂4个区域,只能是一种颜色涂第2,4区域,另一种颜色涂第3,5区域,有2种着色方法.由分步计数原理得有43224(种).综上,共有482472(种).随堂练习1.在某学校举行的“文学名著阅读月”活动中,甲、乙、丙、丁、戊五名同学相约去学校图书室借阅四大名著红楼梦三国演义水浒传西游记(每种名著至少有5本),若每人只借阅一本名著,则不同的借阅方案种数为A.1 0
11、24 B.625 C.120 D.51234解析对于甲来说,有4种借阅可能,同理每人都有4种借阅可能,根据分步计数原理,共有451 024(种)借阅方案.12342.某市汽车牌照号码可以上网自编,但规定从左数第2个号码只能从字母B,C,D中选择,其他四个号码可以从09这10个数字中选择(数字可以重复).若某车主第1个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他可选的车牌号码的所有可能情况有A.180种 B.360种 C.720种 D.960种解析按照车主的要求,从左到右第1个号码有5种选法,第2个号码有3种选法,其余3个号码各有4种选法,因此共有
展开阅读全文