2024中考数学复习 重难题型分类练 题型三 函数的实际应用 (含答案).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2024中考数学复习 重难题型分类练 题型三 函数的实际应用 (含答案).docx》由用户(znzjthk)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024中考数学复习 重难题型分类练 题型三 函数的实际应用 含答案 2024 中考 数学 复习 难题 分类 题型 函数 实际 应用 答案 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、2024中考数学复习 重难题型分类练 题型三 函数的实际应用 类型一行程问题1. (2022临沂)公路上正在行驶的甲车,发现前方20 m处沿同一方向行驶的乙车后,开始减速减速后甲车行驶的路程s(单位:m)、速度v(单位: m/s)与时间t(单位:s)的关系分别可以用二次函数和一次函数表示,其图象如图所示(1)当甲车减速至9 m/s时,它行驶的路程是多少?(2)若乙车以10 m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?第1题图2. (2023齐齐哈尔)在一条笔直的公路上有A、B两地,甲、乙二人同时出发,甲从A地步行匀速前往B地,到达B地后,立刻以原速度沿原路返回A地乙从B地步行匀速前
2、往A地(甲、乙二人到达A地后均停止运动),甲、乙二人之间的距离y(米)与出发时间x(分钟)之间的函数关系如图所示,请结合图象解答下列问题:(1)A、B两地之间的距离是_米,乙的步行速度是_米/分;(2)图中a_,b_,c_;(3)求线段MN的函数解析式;(4)在乙运动的过程中,何时两人相距80米?(直接写出答案即可)第2题图类型二方案问题3. (2023绵阳)某水果经营户从水果批发市场批发水果进行零售,部分水果批发价格与零售价格如下表:水果品种梨子菠萝苹果车厘子批发价格(元/kg)45640零售价格(元/kg)56850请解答下列问题:(1)第一天,该经营户用1700元批发了菠萝和苹果共300
3、 kg,当日全部售出,求这两种水果获得的总利润?(2)第二天,该经营户依然用1700元批发了菠萝和苹果,当日销售结束清点盘存时发现进货单丢失,只记得这两种水果的批发量均为正整数且菠萝的进货量不低于88 kg,这两种水果已全部售出且总利润高于第一天这两种水果的总利润,请通过计算说明该经营户第二天批发这两种水果可能的方案有哪些?类型三利润最值问题4. (2023毕节)2023北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润销售价进货价)类别价格A款钥匙扣B款钥匙扣进货价(元/件)3025销售价(元/件)4537(1)网店第一次用850元购进A、B两款钥匙
4、扣共30件,求两款钥匙扣分别购进的件数;(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售如果按照原价销售,平均每天可售4件经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?5. (2023仙桃)某超市销售一种进价为18元/千克的商品,经市场调查后发现,每天的销售量y(千克)与销售单价x(元/千克)有如下表所示的关系:销售单价x(元/
5、千克)2022.52537.540销售量y(千克)3027.52512.510(1)根据表中的数据在下图中描点(x,y),并用平滑曲线连接这些点,请用所学知识求出y关于x的函数关系式;(2)设该超市每天销售这种商品的利润为w(元)(不计其他成本).求出w关于x的函数关系式,并求出获得最大利润时,销售单价为多少;超市本着“尽量让顾客享受实惠”的销售原则,求w240(元)时的销售单价第5题图6. (2022扬州)甲,乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:说明:汽车数量为整数;月利润月租车费月维护费;两公司月利润差月利润较高公司的利润月利润较低公司的利润在两公司租出的汽
6、车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_元;当每个公司租出的汽车为_辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围类型四抛物线型问题7. (2023安徽)如图,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标
7、系xOy,规定一个单位长度代表1米E(0,8)是抛物线的顶点(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图、图、图中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:修建一个“”型栅栏,如图,点P2,P3在抛物线AED上设点P1的横坐标为m(0m6),求栅栏总长l与m之间的函数表达式和l的最大值;现修建一个总长为18的栅栏,有如图、图所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点
8、P1的横坐标的取值范围(P1在P4右侧)第7题图 源自沪科九上P38第1题8. (2023台州)如图,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水喷水口H离地竖直高度为h(单位: m).如图,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE3 m,竖直高度为EF的长下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2 m,高出喷水口0.5 m,灌溉车到l的距离OD为d(单位: m).(1)若h1.5,EF0.5 m.求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;求下边缘
9、抛物线与x轴的正半轴交点B的坐标;要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围;(2)若EF1 m要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值第8题图类型五几何图形(面积)问题9. (2020无锡)有一块矩形地块ABCD,AB20米,BC30米为美观,拟种植不同的花卉,如图所示,将矩形ABCD分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x米现决定在等腰梯形AEHD和BCGF中种植甲种花卉;在等腰梯形ABFE和CDHG中种植乙种花卉;在矩形EFGH中种植丙种花卉甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总
10、成本为y元(1)当x5时,求种植总成本y;(2)求种植总成本y与x的函数表达式,并写出自变量x的取值范围;(3)若甲、乙两种花卉的种植面积之差不超过120米2,求三种花卉的最低种植总成本第9题图10. (2022苏州)如图,甲、乙都是高为6米的长方体容器,容器甲的底面ABCD是正方形,容器乙的底面EFGH是矩形如图,已知正方形ABCD与矩形EFGH满足如下条件:正方形ABCD外切于一个半径为5米的圆O,矩形EFGH内接于这个圆O,EF2EH.(1)求容器甲、乙的容积分别为多少立方米?(2)现在我们分别向容器甲、乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米/小时,4小时后
11、,把容器甲的注水流量增加a立方米/小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米/小时,同时容器乙的注水流量仍旧保持不变,直到两个容器的水位高度相同,停止注水在整个注水过程中,当注水时间为t时,我们把容器甲的水位高度记为h甲,容器乙的水位高度记为h乙,设h乙h甲h,已知h(米)关于注水时间t(小时)的函数图象如图所示,其中MN平行于横轴根据图中所给信息,解决下列问题:求a的值;求图中线段PN所在直线的解析式第10题图参考答案与解析1. 解:(1)设减速后甲车行驶的路程s与时间t的函数关系式为sat2bt,把点(2,30),(4,56)代入得,解得,
12、st216t,设减速后甲车行驶的速度v与时间t的函数关系式为vmt16,把点(8,8)代入得,8m168,解得m1,vt16,当v9时,9t16,解得t7,把t7代入st216t,得s7216787.5 m,答:当甲车减速至9 m/s时,它行驶的路程是87.5 m;(2)设t s后两车相距最近,最近距离为L,由题意得,L10t20(t216t)t26t20(t6)22.0,当t6时,L有最小值2,答:6 s时两车相距最近,最近距离为2 m.2. 解:(1)1200,60;【解法提示】根据图象可知,当x0时,两人相距1200米,A、B两地之间的距离为1200米;点M之后两人距离在一直减小可知点M
展开阅读全文