初中数学新人教版七年级上册第五章第2课《解一元一次方程》教案(2024秋).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《初中数学新人教版七年级上册第五章第2课《解一元一次方程》教案(2024秋).doc》由用户(luzy369)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解一元一次方程 初中 数学 新人 教版七 年级 上册 第五 一元一次方程 教案 2024 下载 _七年级上册(2024)_人教版(2024)_数学_初中
- 资源描述:
-
1、5.2 解一元一次方程第1课时:利用合并同类项解一元一次方程【素养目标】1.会正确利用合并同类项解ax+bx=c类型的一元一次方程.2.通过解一元一次方程,体会解方程中的化归思想.【教学重点】建立方程解决实际问题,会解ax+bx=c类型的一元一次方程.【教学难点】根据实际问题建立方程模型.【教学过程】活动一:回顾旧知,引入新知设计意图回顾等式的性质与合并同类项的法则,为解方程的学习作准备.【回顾导入】1.上节课我们学习了利用等式的性质解方程,请大家说一说等式的性质有哪些?(可让学生回答,课堂上一起回顾)2.合并下列各式的同类项:(1)a+2a-4a;(2)-6xy-5+2yx+xy-3.(1)
2、-a;(2)-3xy-8.教学提示回顾旧知时,教师应关注学生是否忘记等式性质中“同一个数”;合并同类项,要关注学生是否能准确识别同类项,是否漏掉了负号.活动二:交流讨论,学习新知设计意图学习利用合并同类项解一元一次方程.探究点 利用合并同类项解一元一次方程(教材P120问题1)某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍.前年这所学校购买了多少台计算机?问题1 你能根据题意列出方程吗?设前年购买计算机x台,则去年购买计算机2x台,今年购买计算机4x台.根据“三年共购买计算机140台”,可以得到如下相等关系:前年购买量+去年购买量+今年购买量=140.列
3、得方程x+2x+4x=140.问题2观察方程,等号左边有3个含x的未知数项,不能直接利用等式性质解这个方程.我们可以利用什么知识,将这个方程转化一下,以便顺利地求解呢?利用合并同类项的法则,把含有x的项合并同类项,得7x=140.问题3你能进一步求出方程的解吗?系数化为1,得x=20.因此,前年这所学校购买了20台计算机.思考(教材P120思考)上面解方程中“合并同类项”起了什么作用?合并同类项是一种恒等变形,通过合并同类项,减少项数,进而将方程转化为更接近x=m的形式.【对应训练】 教材P121练习第2题.教学提示给学生说明,“系数化为1”指使方程由ax=b(a1)变形为x=m,它的依据是等
4、式的性质2.系数化为1时,要避免出现以下几种错误:(1)颠倒除数与被除数的位置;(2)忽略未知数系数的符号.教学提示结合解方程的过程,让学生思考有关步骤(合并同类项)的作用,是为了反复渗透“解方程就是要使方程不断向x=m(常数)的形式转化”的化归思想.【教学过程】活动三:熟练运用,巩固提升设计意图巩固用合并同类项解一元一次方程的方法,强化运算能力.例1(教材P120例1)解下列方程:(1)2x-5/2x=6-8;(2)7x-2.5x+3x-1.5x=-154-63.例2(教材P121例2)有一列数1,-3,9,-27,81,-243,其中第n个数是(-3)n-1(n1).如果这列数中某三个相邻
5、数的和是-1701.这三个数各是多少?分析:数的排列规律:后一个数=-3前一个数.某三个相邻数的和:前面的数+中间的数+后面的数=-1701.解:设所求三个数中的第1个数是x,则后两个数分别是-3x,9x.由三个数的和是-1701,得x-3x+9x=-1701.合并同类项,得7x=-1701.系数化为1,得x=-243.所以-3x=729,9x=-2187.答:这三个数是-243,729,-2187.【对应训练】教材P121练习第1,3题.教学提示给学生总结:例1中,解一元一次方程时,同类项有两类,即含未知数的一次项和常数项.这两类都需要合并.教学提示让学生认识到:用一元一次方程解含多个未知数
6、的问题时,通常先设其中一个为x,再根据其他未知数与x的关系,用含x的式子表示这些未知数.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.今天我们学习的解方程,有哪些步骤?2.解一元一次方程时,合并同类项起了什么作用?3.系数化为1的依据是什么?4.含多个未知数时,怎样设未知数列方程?【作业布置】1.教材P130习题5.2第1(1)(2),14题.【教学后记】第2课时:利用移项解一元一次方程【素养目标】1.能从实际问题中找出相等关系,并列一元一次方程,培养抽象能力.2.能利用移项合并同类项解形如ax+c=bx+d的方程,强化运算能力.【教学重点】利
7、用移项合并同类项解形如ax+c=bx+d的方程.【教学难点】实际问题中找出相等关系,构建方程模型解决问题.【教学过程】活动一:回顾旧知,引入新知设计意图通过合并同类项遇到的问题,引出移项的新课题.【课堂引入】你能利用等式的性质解下列方程吗?(1)x=3x+2;(2)x-2=6-x;(3)0.5x+1=1.2x-4.显然解这些方程的第一步不是合并同类项,因为在这些方程中,同类项分别分布在等号的两边,不能直接合并,那么怎么才能进行合并同类项呢?下面我们就来开始今天的学习移项.教学提示让学生结合等式的性质1,想想为了合并同类项,在等式的两边应该加减什么.活动二:对比学习,探究新知设计意图加强根据实际
8、问题列方程的能力.探究点 利用移项解一元一次方程(教材P122问题2)把一批图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则缺25本.这个班有多少名学生?问题1设这个班有x名学生.应如何列方程呢?每人分3本,共分出3x本,加上剩余的20本,这批书共(3x+20)本;每人分4本,需要4x本,减去缺的25本,这批书共(4x-25)本.这批书的总数是一个定值,表示它的两个式子应相等,根据这一相等关系列得方程3x+20=4x-25.问题2方程3x+20=4x-25的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25),怎样才能把它转化为x=m(常数)的形式呢?请你用等式的
9、性质试一试.为了使方程的右边没有含x的项,等式两边减4x,利用等式的性质1,得3x+20-4x=-25.为了使方程的左边没有常数项,等式两边减20,利用等式的性质1,得3x-4x=-25-20.问题3把方程3x-4x=-25-20与原方程作比较,请你用自己的语言描述其中的变化.这个变形相当于即把原方程左边的20变为-20移到右边,把右边的4x变为-4x移到左边.教学提示(1)本题属于中国古代数学中所说的“盈不足问题”.(2)可以给学生总结,列这个方程依据的是“表示同一个量的两个不同的式子相等”.【教学过程】问题4 把某项从等式的一边移到另一边时,这项有什么变化?该项系数的符号变了.设计意图通过
10、比较,找出区别,引入移项的概念.概念引入:问题5请你继续解方程3x-4x=-25-20.合并同类项,得-x=-45.系数化为1,得x=45.由上可知,这个班有45名学生.思考(教材P123思考)上面解方程中“移项”起了什么作用?通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=m(常数)的形式.【对应训练】教材P124练习第2,3题.教学提示移项法则是根据等式的性质1得出的.教学中应展现得出移项法则的过程,说明移项“变号”的道理,体现移项法则的合理性,引导学生在理解道理的基础上记忆移项法则.活动三:运用新知,巩固提升设计意图展现利用移项解方程的步骤.设计意图巩固用方程解决实
11、际问题的能力.例1(教材P123例3)解下列方程:(1)3x+7=32-2x;(2)x-3=3/2x+1.解:(1)移项,得3x+2x=32-7.合并同类项,得5x=25.系数化为1,得x=5.(2)移项,得x-3/2x=1+3.合并同类项,得-1/2x=4.系数化为1,得x=-8.方法归纳:例2(教材P123例4)某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t;如用新工艺,则废水排量比环保限制的最大量少100t.新旧工艺的废水排量之比为25,采用两种工艺的废水排量各是多少吨?分析提问:(1)说一说本题中什么量是一定的?根据题意你能得出怎样的相等关系?环保限制的最
12、大废水排量是一定的.相等关系:旧工艺废水排量-200=新工艺废水排量+100.(2)由“新旧工艺的废水排量之比为25”,你认为可以如何设未知数?可设新工艺的废水排量为2xt,旧工艺的废水排量为5xt.根据前面的分析求出两种工艺下的废水排量.解:设采用新旧工艺的废水排量分别为2xt和5xt.根据废水排量与环保限制最大量之间的关系,得5x-200=2x+100.移项,得5x-2x=100+200.合并同类项,得3x=300.系数化为1,得x=100.所以2x=200,5x=500.答:采用新旧工艺的废水排量分别为200t和500t.【对应训练】教材P124练习第1,4题.教学提示提醒学生注意:(1
13、)方程中的项是连同它前面的符号的,不要忽略,移项要变号.(2)移项时,应使含未知数的项集中于方程一边,常数项集中于另一边.教学提示(1)本题中涉及两个量的比,在设未知数时应利用这种比的关系使要求的量的形式尽可能简单易算.(2)求出x的值后,还要进一步求出题中要求的量.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.如何根据同一个量的不同表示方法列方程?2.移项的依据是什么?移项应注意什么?3.如何利用移项合并同类项的方法解方程?【作业布置】1.教材P130习题5.2第1(3)(4),4(1)(2),6,8,10题.【教学后记】第3课时 利用去括号
展开阅读全文