2024辽宁中考数学二轮专题训练 微专题 构造全等的四大方法 (含答案).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2024辽宁中考数学二轮专题训练 微专题 构造全等的四大方法 (含答案).docx》由用户(znzjthk)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024辽宁中考数学二轮专题训练 微专题 构造全等的四大方法 含答案 2024 辽宁 中考 数学 二轮 专题 训练 构造 全等 四大 方法 答案 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、2024辽宁中考数学二轮专题训练 微专题 构造全等的四大方法 方法一 倍长中线法方法解读(1)倍长中线在ABC中,AD是BC边的中线辅助线作法:延长AD至点E,使ADDE,连接BE.结论:ACD_(2)倍长类中线在ABC中,点D是边BC的中点,点E是边AB上一点,连接DE.辅助线作法:延长ED至点F,使DFDE,连接CF.结论:BDE_1. 如图ABAE,ABAE,ADAC,ADAC,点M为BC的中点,连接AM.求证:DE2AM.第1题图方法二截长补短法方法解读当题目中出现线段的倍差关系时,一般考虑用截长补短法如图,在ABC中,12,C2B.(1)截长法辅助线作法:在AB上截取AFAC,连接D
2、F.结论:(1)AFD_;(2)线段AB,AC,CD的数量关系为_(2)补短法辅助线作法:延长AC至点E,使CECD,连接DE.结论:(1)AED_;(2) 线段AB,AC,CD的数量关系为_2. 如图,在ABC中,A60,BD,CE分别平分ABC和ACB,BD、CE交于点O.猜想线段BE,CD,BC的数量关系,并证明第2题图方法三作平行线法方法解读如图,在ABC中,点D是AB上一点,点E是AC延长线上一点,连接DE交BC于点F,且DFEF.【方法一】辅助线作法:过点D作DHAC,交BC于点H.结论:CEF_【方法二】辅助线作法:过点E作EI平行于BD交BC的延长线于点I.结论:BDF_3.
3、如图,在ABC中,AD平分BAC,E为BC的中点,过点E作EFAD交AB于点G,交CA的延长线于点F.请写出线段BG与CF的数量关系,并证明第3题图方法四旋转法方法解读有共顶点,等线段时考虑用旋转构造全等(1)等腰三角形在ABC中,ABBC,共顶点B,点D为ACB内一点辅助线作法:将ABD旋转至AB与BC重合,旋转角为ABC,连接DD,CD.结论:ABD_;DBD为_;ABC_(2)正方形在正方形ABCD中,CBCD,共顶点C,点E为正方形ABCD内一点辅助线作法:将BCE旋转至BC与DC重合,旋转角为BCD,连接BD,EF.结论:BCE_;CEF为_;BCD_4. (1)如图,点E,F分别在
4、正方形ABCD的边BC,CD上,连接AE、AF,且EAF45,连接EF,猜想线段EF,BE,DF应满足的等量关系,并说明理由;(2)如图,在ABC中,BAC90,ABAC,点D,E均在边BC上,点D在点E的左侧,连接AD、AE,且DAE45,猜想线段BD,DE,EC应满足的等量关系,并说明理由;第4题图参考答案【方法解读】EBD;CDF;ACD;ABACCD;ABD;ABACCD;HDF;IEF;CBD;等腰三角形;DBD;DCF;等腰直角三角形;ECF.1. 证明:如解图,延长AM至点N,使MNAM,连接BN,点M为BC的中点,CMBM,在AMC和NMB中,AMCNMB,ACNB,CNBM,
展开阅读全文