2023-2024学年北师版八年级数学寒假专题拔高作业 第5节 因式分解1(含答案).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2023-2024学年北师版八年级数学寒假专题拔高作业 第5节 因式分解1(含答案).docx》由用户(znzjthk)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023-2024学年北师版八年级数学寒假专题拔高作业 第5节 因式分解1含答案 2023 2024 学年 北师版 八年 级数 寒假 专题 拔高 作业 因式分解 答案 下载 _八年级上册_北师大版(2024)_数学_初中
- 资源描述:
-
1、第5讲 因式分解1(学生版)目标层级图课前检测1.下列等式从左到右的图形,属于因式分解的是()A B C D2.(1)若,求的值3.分解因式 = 课中讲解一.概念1. 定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。分解因式与整式乘法互为逆变形。注意: (1)分解的结果要以积的形式表示;(2)每个因式必须是整式,且每个因式的次数都必须不高于原来多项式的次数;(3)必须分解到每个多项式因式不能再分解为止2.因式分解结果的要求因式分解结果的标准形式常见错误或不规范模式符合定义,结果一定是乘积的形式不能含有中括号,大括号最后的因式不能再次分解相同因式写成幂
2、的形式括号首项不能为负因式中不含有分式因式中不含无理数单项式因式写在多项式因式前面每个因式第一项系数一般不为分数例1.下列各式从左到右的变形中,是因式分解的为( )A B.C D过关检测1. 下列从左到右边的变形,是因式分解的是()A BC D2下面式子从左边到右边的变形是因式分解的是()A BC D 3下列各式中从左到右的变形,是因式分解的是()A BC D二.提公因式法1公因式定义:多项式的各项都含有相同的因式,我们把多项式各项都含有相同因式,叫做这个多项式各项的公因式。2确定公因式的方法:系数取多项式各项系数的最大公约数;字母或多项式因式取各项都含有的字母或多项式因式的最低次幂3提公因式
3、法定义:如果一个多项式的各项都含有公因式,可将这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法。4提公因式步骤: 确定多项式中各项的公因式 (包括系数、字母、多项式因式)提出公因式(注意符号)确定多项式提出公因式后的因式(把原多项式除以公因式所得的商作为另一个因式,写出结果),将提出公因式后的因式合并同类项(注意:如果某一项提出全部后,还剩1)例1.(1) (2) (3)过关检测1因式分解: 2把下列各式因式分解(1) (2)(3) (4)例2对下列式子进行因式分解(1) (2)过关检测1把下列各式进行因式分解(1); (2) (3) (4) 2已知可分解
4、因式为,其中、均为整数,则 例3若的公因式是,则等于()ABCD2an+1过关检测1利用因式分解计算: 2利用因式分解计算: 三.公式法1根据因式分解与整式乘法的关系,我们可以利用乘法公式把某些多项式因式分解,这种因式分解的方法叫做公式法!2公式法两种类型:平方差公式法:形如的式子称为完全平方式。用完全平方公式因式分解:需要了解的几种类型: 例1利用平方差公式进行因式分解: 过关检测1因式分解下列各式(1) (2)(3)2下列多项式中不能用平方差公式分解的是()A B C D3下列多项式,不能运用平方差公式分解的是()ABCD例2用完全平方式法对下列各式进行因式分解(1) (2) (3) (4
5、) (5) (6)过关检测1因式分解下列各式(1) (2)(3) (4) 例3已知,求的值过关检测1(1) (2)学习任务1下列各式从左到右,是因式分解的是()ABC D2阅读下列材料:如果,那么,则,由此可知:根据以上材料计算的根为()ABCD3若是正整数,且,则数对为 4用完全平方式法对下列各式进行因式分解(1) (2) (3) (4)(5) (6)(7)5分解因式:(1)(2)第5讲 因式分解1(解析版)目标层级图本节内容:本节主要是涉及因式分解的认识及提公因式和公式法的分解方法1、先带领学生认识什么叫因式分解,重点强调必须是整式及因式分解的结果,并附上因式分解的一些格式要求,要求学生一
6、定要完全理解2、运用提公因式法对整式进行分解,首先需要理解什么是公因式,以及确定公因式的方法,特别注意先系数,在单项式,在进行多项式的公因式提取,某一项全部提出后剩余1,难版增加了提公因式次数为字母的提公因式,注意提取指数的最低次幂3、运用公式法包含平方差、完全平方公式以及立方和立方差公式运用,注意分解后检查是否分解完全,立方和及立方差的分解需要老师提前刷一下讲义。课前检测1.下列等式从左到右的图形,属于因式分解的是()A B C D【解答】解:A、m(ab)mamb,是单项式乘以多项式,故此选项错误;B、2a2+aa(2a+1),是分解因式,符合题意;C、(x+y)2x2+2xy+y2,是整
7、式乘法运算,故此选项错误;D、m2+4m+4m(m+4)+4,不符合因式分解的定义,故此选项错误故选:B2.(1)若,求的值【解答】解:(1)x+y4,xy3,x2y+xy2xy(x+y)3412;3.分解因式 = 【解答】解:x2(xy)+(yx)=x2(xy)(xy)=(xy)(x21)=(xy)(x+1)(x1)故答案为:(xy)(x+1)(x1)课中讲解一 概念2. 定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。分解因式与整式乘法互为逆变形。注意: (1)分解的结果要以积的形式表示;(2)每个因式必须是整式,且每个因式的次数都必须不高于原来
8、多项式的次数;(3)必须分解到每个多项式因式不能再分解为止2.因式分解结果的要求因式分解结果的标准形式常见错误或不规范模式符合定义,结果一定是乘积的形式不能含有中括号,大括号最后的因式不能再次分解相同因式写成幂的形式括号首项不能为负因式中不含有分式因式中不含无理数单项式因式写在多项式因式前面每个因式第一项系数一般不为分数例1.下列各式从左到右的变形中,是因式分解的为( )A B.C D【解答】A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x21(x+1)(x1),正确;D、结果不是积的形式,故选项错误故选:C过关检测1.下列从左到右边的变形,是因式分解的是()A BC
展开阅读全文