《模式识别原理与应用》课件第1章.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《模式识别原理与应用》课件第1章.ppt》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 模式识别原理与应用 模式识别 原理 应用 课件
- 资源描述:
-
1、第1章绪论第第1章绪章绪 论论1.1模式识别的基本概念模式识别的基本概念1.2模式识别系统模式识别系统1.3模式识别的基本方法模式识别的基本方法第1章绪论1.1 模式识别的基本概念模式识别的基本概念人们在日常生活中,几乎时时在进行类识别活动。对于视觉而言,眼睛收集外界信息传至大脑,由大脑对所接收的视觉信息进行识别和理解。视觉信息识别是低层次的类识别,例如,当我们看见一只猫时,很容易识别出猫这一动物的类别。而高层次的视觉理解,是通过分析直观的观测结果得到更深层次的信息,这对人的知识和素质有很强的依赖性。第1章绪论例如,在二战时期,一名高素质的情报人员根据看到的一只经常出来晒太阳的波斯猫推断出敌方
2、高级指挥所的位置,从而为己方提供了非常有价值的情报信息。对于听觉而言,人耳将声音信息传至大脑,由大脑对所接收的声音信息进行识别和理解,获得声音所属的语言种类(语种识别)、声音所对应的说话人(说话人识别)以及声音所包含的关键词(关键词识别)等。除此之外,人还具有对触觉、味觉、嗅觉等信息的类识别能力,且也具有低级和高级两个层次。第1章绪论模式识别的目的就是利用计算机实现人的类识别能力,是对两个不同层次的识别能力的模拟。对信息的理解往往含有推理过程,需要专家系统、知识工程等相关学科的支持。本书讲述的模式识别理论主要是指对人的低级类识别能力的模拟,具体地说,就是实现“观察对象是什么”的判断,其中观察对
3、象就是模式。第1章绪论模式是指具有某种特定性质的观察对象。特定性质指的是可以用来区别观察对象是否相同或是否相似而选择的特性。观察对象存在于现实世界,可以是视觉、听觉、触觉、味觉、嗅觉等所能感知的任何物质。例如,一个数字、一句话、一张照片等都是观察对象,都可以成为模式识别中的识别对象。广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或是否相似,都可以称为模式。根据模式的特性,将具有相似特性的模式的集合表达为模式类。模式识别就是根据模式的特性,将其判入某一类。第1章绪论模式识别是一种智能活动,包含分析和判断两个过程。分析的过程在于确定用于划分模式类的特征及其表达方法;判断的过程则
4、体现在依据待识别对象的特性,将其判属于某一个模式类。模式识别作为一门学科,属于机器智能,故属于人工智能的范畴。模式识别理论的发展和广泛应用,极大地推动了人工智能的发展和应用。第1章绪论1.2模式识别系统模式识别系统模式识别的本质就是根据模式的特性表达和模式类的划分方法,利用计算机将模式判属特定的类。因此,模式识别需要解决5个问题:模式的数字化表达、模式特性的选择、特性表达方法的确定、模式类的表达和判决方法的确定。一般地,模式识别系统由信息获取、预处理、特征提取和选择、分类判决等4个部分组成,如图1-1所示。第1章绪论图 1-1模式识别系统的组成框图1.信息获取信息获取对于人脑识别而言,人脑通过
5、感觉器官获取模式信息。对于机器识别来说,由于计算机只能处理数字信号,计算机获取模式信息意味着实现观察对象的数字化表达,因此,需要借助于各种传感器设备,将视觉、听觉、触觉、味觉、嗅觉等信息转化为电信号,再通过模/数(A/D)转换装置将电信号转换成数字化信息。信息获取过程如图1-2所示。第1章绪论图 1-2信息获取示意图不同性质的信息需要不同的传感器设备,有的传感器和A/D转换设备是融为一体的,有的则是分离的。例如,对于视觉信息,可以先采用摄像机完成光电转换,再采用图像采集卡完成A/D转换;也可以采用数字化摄像机(CCD)、数码相机直接获得数字信息。数字图像(或视频)是视觉信息的数字化表达。对于听
6、觉信息,可以先采用话筒完成声电转换,再采用声卡完成A/D转换;也可以采用数字录音机直接获得数字信息。数字语音是听觉信息的数字化表达。第1章绪论2.预处理预处理在得到模式的数字化表达后,往往需要对它进行预处理,以便去除或减少噪声的影响,突出有用信息。对于图像信息,采用数字图像处理技术作为其预处理技术,常用的方法有几何校正、图像增强、图像还原等。第1章绪论对于语音信息,采用数字语音处理技术作为其预处理技术。作为一种一维信号,除了它和人耳特性有关的一些特殊方法外,也可以用一般的信号处理方法进行处理。对于电信号,一般可以用信号处理的方法进行处理,包括统计信号处理、自适应信号处理和谱分析等技术,其目的在
7、于抑制噪声或将信号转换成更便于识别的形式。第1章绪论3.特征提取和选择特征提取和选择在模式识别中,需要先建立模式类,对于给定的模式,识别就是将其判属于某一个模式类的过程。模式和模式类能进行从属关系判决的前提条件是,模式和模式类中的元素具有相似的性质(或称特性)。为此,需要对模式信息进行特性分析。特性分析包含两个方面:一个是分类特性的选择;另一个是特性表达方法的选择。第1章绪论分类特性的选择是模式识别系统设计中非常重要而又关键的一步,与识别目的具有很大的相关性,且往往对领域专家有较强的依赖性。例如,在遥感图像军事目标识别中,需要结合军事专家的知识和判图专家的判读分析经验,形成对目标的特性描述,如
展开阅读全文