《信息安全导论》课件第10章 (2).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《信息安全导论》课件第10章 (2).ppt》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信息安全导论 信息安全导论课件第10章 2 信息 安全 导论 课件 10
- 资源描述:
-
1、第十章 数字签名与消息认证讨论议题 数字签名数字签名的概念基本签名算法特殊签名算法研究动向一、数字签名的概念Digital signature Goal:Use the digital technique to emulate the“hand-written signature”Security requirements Unforgeability:one cannot create a signature that is claimed to be anothers Undeniability:the signer cannot later deny the validity of hi
2、s signatureRequirements The signature depends on the signer and the document to be signed.Easy to compute:it is easy for a signer to sign a document Universal verifiability:every one can verify validity of a signature(with respect to the signer and the document)Easy to store:the signature should be
3、short enough Attacks on digital signature Attack type Key-only attack (ciphertext-only)Known-message attack (known-plaintext)Chosen-message attack (chosen-plaintext)Forgery tye Existential forgery Selective forgeryMessageSign FunctionVerification FunctionSigners secret keyMessageSignatureSigners pub
4、lic keyMessageCheck Message=?MessageThe Model of Digital Signature Digital signature:usage Off-line:Signing a document for emulating the hand-written signature On-line:identity authentication(+session key distribution)BobAlicechallenge cr=Sig(KRBob,c)If Ver(KUBob,r,c)=truethen accept that“Bob is tal
5、king to me”What security service can digital signature provide?Data Integrity Authentication Non-forgeability Non-repudiation 签名的一个重要应用签名的一个重要应用证书认证中心证书认证中心(CA)第三方信任的模型第三方信任的模型Fig.信任的层次结构信任的层次结构公正的被信任者公正的被信任者经认定可以经认定可以被信任的中被信任的中间角色间角色用户群用户群A B网络空间的信任建立问题是信息安全讨论的核心问题,网络空间的信任建立方法很大程度上借鉴了传统生活中建立信任的方法。正
6、如手写签名在传统生活中的重要作用一样,数字签名是网络空间中建立信任的一块基石。结论China Digital Signature Law have become effective April 1 2005 China Digital Signature Law has become effective Digital Signature Law is an Infrastructure of E-COMSupply ChainOnline PaymentTrading PlatformInformation Exchange PlatformCredit SystemDigital Sign
7、ature Law is Infrastructure二、基本签名算法Fundamental schemes Signature schemes based on error-correcting codes Signature schemes based on two hard problems Signature schemes based on elliptic curves Algorithm foundationqTwo Famous Digital Signature Schemes 1.RSA Digital signature scheme(based on the facto
8、rization problem)2.ElGamal digital signature and Meta-ElGamal signature schemes(based on the discrete logarithm)RSA Digital Signature (R.L.Rivest,A.Shamir,and L.M.Adleman,1978)ElGamal Digital Signature (T.ElGamal,1985)Schnorrs Digital Signature (C.P.Schnorr,1989)DSS (NIST,1991)RSA Public Key Cryptos
9、ystem and Digital Signature Schemeq Rivest,Shamir,and Adleman proposed in 1978q RSA Public Key Cryptosystem Security Basis:Factorization Problem.Construction:1.Choose two large prime numbers P and Q,then compute N=PQ.2.Select an integer e such that gcd(e,(N)=1.3.Compute d such that ed mod(N)=1.4.Pub
10、lic key=(N,e).5.Private key=(P,Q,d).RSA Public Key Cryptosystem and Digital Signature Schemeq RSA Digital Signature Scheme v Sign Function:Signature S=Md mod N.v Verification Function:M=Se mod N.q Example1.P=11,Q=13,N=143,and(143)=120.2.e=103,then d=7(for 1037 mod 120=1).3.Sign for M=3:S=37 mod 143=
11、42.4.Verification:M=Se mod N=42103 mod 143=3.ElGamal Public Key Cryptosystem and Digital Signature Schemeq ElGamal proposed in 1985q ElGamal Public Key Cryptosystem Security Basis:Discrete Logarithm Problem 1.If P is a large prime and g and y are integers,find x such that y=gx mod P.2.The security r
12、estriction on P:P-1 must contain a large prime factor Q.Construction:1.Choose a large prime number P and a generator g of GF(P).2.Private key:a random integer x between 1 and P-1.3.Public key:y=gx mod P.ElGamal Public Key Cryptosystem and Digital Signature Schemev Sign Function:Signature(r,s)for mes
13、sage M.1.Select a random integer k between 1 and P-1 such that gcd(k,P-1)=1.2.Compute r=gk mod P.3.Compute s=k-1(M-xr)mod(P-1).vVerification Function:1.Verify by checking whether gM mod P=(rs)(yr)mod P.(rs)(yr)=g(M-xr)gxr=g(M-xr)+xr=gM mod P.ElGamal Public Key Cryptosystem and Digital Signature Sche
14、meq Example1.P=23,g=5.2.x=3,then y=10(for 53 mod 23=10).3.Sign for the message M=8.4.Select k=5 between 1 and 22(P-1).5.Compute r=gk mod P=55 mod 23=20.6.Compute s=k-1(M-xr)mod(P-1)=5-1(8-320)mod 22=914 mod 22=16.7.Verification:gM=58 mod 23=16 (rs)(yr)mod P=2016 1020 mod 23=133 mod 23=16.Schnorrs Di
15、gital Signature Schemev Sign Function:Signature(r,s)for message M.1.Select a random integer k between 1 and P-1.2.Compute r=h(M,gk mod P).3.Compute s=k+x*r mod(P-1).,where the secret key x the public key y=g-x mod P4.Send(M,r,s)to the receiver.vVerification Function:1.Compute gk mod P=gsyr mod P.2.V
16、erify by checking whether r=h(M,gk mod P).Digital Signature Standard(DSS)Proposed in 1991 by NIST as FIPS186-2Signature:r=(gk mod p)mod qs=k-1(H(m)+xr)mod qVerificationt=s-1 mod qr=(gH(m)t yrt mod p)mod qIf r=r,(r,s)is legal.p:512 bits prime numberq:160 bits prime number and q|(p-1)g:g=h(p-1)/q mod
17、p,h(any integer)p-1H:one way hash functionx:private key qy:y=gx mod p(corresponding public key)k-1k=1 mod q,(r,s)is the signature of m.三、特殊签名算法 1.Schemes with message recovery:Signatures with message recovery Authenticated encryption schemes Authenticated encryption scheme with message linkages Auth
18、enticated encryption scheme with(t,n)shared verification Digital Signature with Message Recovery建立在ElGamal架构上,其特点是验证的结果即为文件本身。2.Schemes with signer-aided verification:Undeniable signature Confirmer signatures Convertible undeniable signatures Group-oriented undeniable signature Undeniable Signature
19、验证时,需由验证者与签名者合作才可证明其正确性,此法可指定接收者,签名者可确定接收者是谁。Convertible Undeniable Signature 可由签名者把Undeniable Signature转换成一般的数字签名。Confirmer Signature 与不可否认的数字签名目的相同,不同的是验证者须与指定的确认者合作。3.Schemes for multi-user:Multi-signatures Multi-signature scheme with distinguished signing authorities Threshold signatures(Group-o
20、riented signature)Threshold signature scheme with traceable signer Multi-Signature 一份签名需由群体同意才能产生,其特征有 只有群体內的成员才能签署文件 接收者可验证签名对群体的有效性 接收者无法确定哪些成员为签名者 遇争议时,可公布签名者名单 多重签名的方式可分为两类 平行式 串联式需一位公证人 Digital Signature with(t,n)Shared Verification 一个签名需由多位验证者合作才能验证其正确性,亦即n个验证者中,至少要t个验证者的合作.4.E-cash and e-Voti
21、ng scheme:Blind signature Blind threshold signature Partially blind signature Partially Blind threshold signature Fair blind signature Blind Signature=Digital Signature+Encryption Unforgeability and Unlinkability Applications Untraceable Electronic Cash Anonymous Electronic Voting Partially blind si
22、gnatures can reduce the storage Fair blind signatures can deal with the misuse of unlinkabilityblind signatureBlind Signature 签名者不知道文件內容 签名者无法追踪文件与盲签名的相互关系。(x,f(x)为private key与public key S(x,m)为文件m的签名 B(m,r)为blind document,r为blind factor U(s,r)为urn-blind signature,r为blind factorBlind Signature的流程1 A
23、传送blind document B(m,r)给B2 B用private key x对B(m,r)做签名,将S(x,B(m,r)传给A3 A验证S(x,B(m,r),再计算U(S(x,B(m,r),r)得到最后的签名S(x,m)Blind Signatureq D.Chaum proposed in 1983q D.Chaums Blind Signature Scheme It uses the RSA algorithm.Security Basis:Factorization Problem Construction:Bob has a public key,e,a private ke
24、y,d,and a public modulus,N.Alice wants Bob to sign message M blindly.1.Alice chooses a random integer k between 1 and N.Then she blinds M by computing t=Mke mod N.2.Bob signs t,td=(Mke)d mod N.3.Alice unblinds td by computing s=td/k mod N=Md mod N.s is the signature of message M.Blind SignaturePrope
25、rty:Untraceable Applications:can be used in electronic cash system.MerchantConsumerBank-signs coins-database Coin:(SN,s)1.t=SNke mod N SN:Serial#k:random number2.t3.td mod N4.s=(td)/k mod N=SNd mod N5.Coin6.Verify the signature s7.Coin盲签名的种类 门限盲签名 应用门限思想,多单位签署 局部盲签名 签名者在签名中加入一些信息c,如时戳,而c是不可伪造的 签名者产生
展开阅读全文