2023-2024学年人教版数学八年级下册期末综合检测卷.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2023-2024学年人教版数学八年级下册期末综合检测卷.docx》由用户(disk123)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 2024 学年 人教版 数学 年级 下册 期末 综合 检测 下载 _八年级下册_人教版(2024)_数学_初中
- 资源描述:
-
1、2023-2024学年八年级(下)期末数学模拟卷一、选择题(每小题3分,共30分)1(3分)下列根式中是最简二次根式的是()ABCD2(3分)若有意义,则()AxBx且x2Cx且x2Dx且x03(3分)如果函数y(k2)x|k1|是x的正比例函数,那么k的值为()A0B1C0或2D24(3分)下列命题中,正确的命题的是()A有两边相等的平行四边形是菱形B有一个角是直角的四边形是矩形C四个角相等的菱形是正方形D两条对角线相等的四边形是矩形5(3分)如图,在平行四边形ABCD中,DE平分ADC交BC边于点E,已知BE4cm,AB6cm,则AD的长度是()A4cmB6cmC8cmD10cm6(3分)
2、如图,已知直线yx+b与ykx+3相交于点A,则关于x,y的二元一次方程组的解为()ABCD7(3分)某运动品牌服装店试销一批新款球衣,一周内销售情况如表所示,服装店经理希望了解到哪种型号最畅销,那么他最关注的统计量应该是() 型号(厘米)383940414243数量(件)14203649257A平均数B方差C中位数D众数8(3分)如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,且DEAB,若AC6,则DE的长为()A3B3C2D49(3分)如图,在RtABC中,ACB90,AC6,BC8,则RtABC的中线CD的长为()A5B6C8D1010(3分)如图,正方形ABCD的边长为
3、3,E是BC中点,P为BD上一动点,则PE+PC的最小值为()AB2CD2二、填空题(每小题3分,共18分)11(3分)计算: 12(3分)一组数据按从小到大的顺序排列为1,2,3,x,4,5,若这组数据的中位数为3,则这组数据的方差是 13(3分)平行四边形ABCD中,则连接四边形ABCD四边中点所成的四边形是 14已知,则yx+a2的值为 &nb
4、sp; 15如图,已知四边形ABCD和四边形CEFG均为正方形,且G是AB的中点,连接AE,若AB2,则AE的长为 16(3分)如图,在RtABC中,ACB90,AC3,BC4,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折DBE使点B落在点F处,连接AF,则线段AF长的最小值为 三、解答题17(5分)计算:18(5分)两个完全相同的矩形纸片ABCD,BFDE如
5、图放置求证:四边形BNDM是菱形19(5分)已知:ABAC,且ABAC,D在BC上,求证:BD2+CD22AD220(8分)为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量x(度)付电费y(元)的关系如图所示(1)根据图象,请分别求出当0x50和x50时,y与x的函数关系式(2)当每月用电量不超过50度和用电量超过50度时的收费标准各是多少?21(7分)某校组织了一次G20知识竞赛活动,根据获奖同学在竞赛中的成绩制成的统计图表如下,仔细阅读图表解答问题:分数段频数频率80x85a0.285x9080b90x9560c95x100200.1(1)求出表中a,b,c的数值,并补全
6、物数分布直方图;(2)获奖成绩的中位数落在哪个分数段?22(10分)如图,在平面直角坐标系中,直线L1:yx+6分别与x轴、y轴交于点B、C,且与直线L2:yx交于点A(1)分别求出点A、B、C的坐标;(2)直接写出关于x的不等式x+6x的解集;(3)若D是线段OA上的点,且COD的面积为12,求直线CD的函数表达式23(12分)已等腰RtABC中,BAC90点D从点B出发沿射线BC移动,以AD为腰作等腰RtADE,DAE90连接CE(1)如图,求证:ACEABD;(2)点D运动时,BCE的度数是否发生变化?若不变化,求它的度数;若变化,说明理由;(3)若AC,当CD1时,请求出DE的长202
7、3-2024学年八年级(下)期末数学模拟卷参考答案与试题解析一、选择题(每小题3分,共36分)1(3分)下列根式中是最简二次根式的是()ABCD【分析】根据最简二次根式的定义:被开方数的因数是整数,因式是整式,且被开方数中不含能开得尽方的因数或因式,逐一判定即可【解答】解:A,则不是最简二次根式,故此选项不符合题意;B是最简二次根式,故此选项符合题意;C,则不是最简二次根式,故此选项不符合题意;D,则不是最简二次根式,故此选项不符合题意故选:B【点评】本题考查对最简二次根式的理解,熟练掌握最简二次根式的定义及二次根式的性质是解题的关键2(3分)若有意义,则()AxBx且x2Cx且x2Dx且x0
8、【分析】根据分式、二次根式有意义的条件,若有意义,则,据此求出x的取值范围即可【解答】解:有意义,由,可得x,由,可得x2,若有意义,则x且x2故选:B【点评】此题主要考查了分式、二次根式有意义的条件,解答此题的关键是要明确:(1)分式有意义的条件是分母不等于零;(2)二次根式中的被开方数是非负数3(3分)如果函数y(k2)x|k1|是x的正比例函数,那么k的值为()A0B1C0或2D2【分析】根据正比例函数的定义可得|k1|1且k20,然后进行计算即可解答【解答】解:由题意得:|k1|1且k20,k2或k0且k2,k0,故选:A【点评】本题考查了正比例函数的定义,熟练掌握正比例函数的定义是解
9、题的关键4(3分)下列命题中,正确的命题的是()A有两边相等的平行四边形是菱形B有一个角是直角的四边形是矩形C四个角相等的菱形是正方形D两条对角线相等的四边形是矩形【分析】根据菱形、矩形、正方形的判定定理判断即可【解答】解:A、邻边相等的平行四边形是菱形,故本选项说法错误,不符合题意;B、有一个角是直角的平行四边形是矩形,故本选项说法错误,不符合题意;C、四个角相等的菱形是正方形,说法正确,符合题意;D、两条对角线相等的平行四边形是矩形,故本选项说法错误,不符合题意;故选:C【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理5
10、(3分)如图,在平行四边形ABCD中,DE平分ADC交BC边于点E,已知BE4cm,AB6cm,则AD的长度是()A4cmB6cmC8cmD10cm【分析】由已知平行四边形ABCD,DE平分ADC可推出DCE为等腰三角形,所以得CECDAB6,那么ADBCBE+CE,从而求出AD【解答】解:已知平行四边形ABCD,DE平分ADC,ADBC,CDAB6,EDCADE,ADBC,DECADE,DECCDE,CECD6,BCBE+CE4+610,ADBC10,故选:D【点评】此题考查的知识点是平行四边形的性质及角平分线的性质,关键是由平行四边形的性质及角平分线的性质得等腰三角形通过等量代换求出AD6
11、(3分)如图,已知直线yx+b与ykx+3相交于点A,则关于x,y的二元一次方程组的解为()ABCD【分析】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案,【解答】解:直线ykx+3与yx+b交于点A(1,2),关于x,y的二元一次方程组的解为,故选:A【点评】本题考查了一次函数与二元一次方程(组),函数图象交点坐标为两函数解析式组成的方程组的解是解题的关键7(3分)某运动品牌服装店试销一批新款球衣,一周内销售情况如表所示,服装店经理希望了解到哪种型号最畅销,那么他最关注的统计量应该是() 型号(厘米)383940414243数量(件)14203649257A平均数B方差C中位
12、数D众数【分析】要了解哪种型号最畅销,就要关注哪种型号买的最多,找出出现次数最多的数,因此关注众数【解答】解:要了解哪种型号最畅销,那么就看哪种型号买的最多,因此关注众数,故选:D【点评】本题主要考查统计量的选择,需要掌握平均数、众数、中位数、方差的意义和特点,理解各个统计量的特点是解决问题的关键8(3分)如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,且DEAB,若AC6,则DE的长为()A3B3C2D4【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得ADBD,再根据菱形的四条边都相等可得ABAD,然后求出ABADBD,从而得到ABD是等边三角形,再根据菱形的对角线互
13、相平分求出AO,再根据等边三角形的性质可得DEAO【解答】解:E为AB的中点,DEAB,ADDB,四边形ABCD是菱形,ABAD,ADDBAB,ABD为等边三角形四边形ABCD是菱形,BDAC于O,AOAC63,由(1)可知DE和AO都是等边ABD的高,DEAO3故选:A【点评】本题考查了菱形的性质,等边三角形的判定与性质,熟记各性质是解题的关键9(3分)如图,在RtABC中,ACB90,AC6,BC8,则RtABC的中线CD的长为()A5B6C8D10【分析】根据勾股定理求出AB,根据直角三角形的性质解答【解答】解:RtABC中,ACB90,AC6,BC8,AB10,CD是RtABC的中线,
14、CDAB5,故选:A【点评】本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2c210(3分)如图,正方形ABCD的边长为3,E是BC中点,P为BD上一动点,则PE+PC的最小值为()AB2CD2【分析】要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解【解答】解:如图,连接AE,点C关于BD的对称点为点A,PE+PCPE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,正方形ABCD的边长为2,E是BC边的中点,BE1.5,AE,故选:C 【点评】此题主要考查
展开阅读全文