2021年福建中考数学复习练习课件:§4.4 多边形与平行四边形.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年福建中考数学复习练习课件:§4.4 多边形与平行四边形.pptx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 福建 中考 数学 复习 练习 课件 4.4 多边形 平行四边形 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、 中考数学 (福建专用) 4.4 多边形与平行四边形 20162020年全国中考题组 考点一 多边形 1.(2019福建,5,4分)已知正多边形的一个外角是36,则该正多边形的边数为( ) A.12 B.10 C.8 D.6 答案答案 B 设该正多边形的边数为n,则n=10,故选B. 360 36 2.(2018福建,4,4分)一个n边形的内角和为360,则n等于( ) A.3 B.4 C.5 D.6 答案答案 B 根据n边形的内角和公式,得(n-2)180=360,可求得n=4. 3.(2019河北,1,3分)下列图形为正多边形的是( ) 答案答案 D 正多边形的各边相等,各角相等,故选D.
2、 4.(2020福建,15,4分)如图所示的六边形花环是用六个全等的直角三角形拼成的,则ABC等于 度. 答案答案 30 解析解析 六边形花环由六个全等的直角三角形构成,故为正六边形,所以每个内角为=120. 所以ABC=120-90=30. (62) 180 6 5.(2020河北,18,3分)正六边形的一个内角是正n边形一个外角的4倍,则n= . 答案答案 12 解析解析 正六边形的每一个内角的度数为=120,根据“正六边形的一个内角是正n边形一个 外角的4倍”可得正n边形每一个外角的度数为30,依据多边形外角和为360可得n=12. (62) 180 6 360 30 6.(2018山西
3、,12,3分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消 融,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形, 则1+2+3+4+5= 度. 图1 图2 答案答案 360 解析解析 任意n(n3,n为整数)边形的外角和为360,图中五条线段组成五边形, 1+2+3+4+5 =360. 7.(2019陕西,12,3分)若正六边形的边长为3,则其较长的一条对角线长为 . 答案答案 6 解析解析 连接正六边形的中心和各个顶点,可得6个小正三角形,显然正六边形较长的一条对角线长为小正 三角形边长的2倍,即较长的一条对角线长为6.
4、 8.(2017福建,15,4分)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图 所示,则AOB等于 度. 答案答案 108 解析解析 如图,正五边形中每一个内角都是108, OCD=ODC=180-108=72. COD=36. AOB=360-108-108-36=108. 9.(2018河北,19,6分)如图1,作BPC平分线的反向延长线PA,现要分别以APB,APC,BPC为内角作 正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案. 例如:若以BPC为内角,可作出一个边长为1的正方形,此时BPC=90,而=45是360(多边形外角 和
5、)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所 示. 图2中的图案外轮廓周长是 ; 在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 . 图1 图2 90 2 1 8 答案答案 14;21 解析解析 题图2中的图案由两个边长均为1的正八边形和1个边长为1的正方形组成,且三个正多边形三边 相连,题图2中的图案外轮廓周长是6+6+2=14.由于三个正多边形的边长均为1,显然以APB,APC为内 角的两个正多边形的边数越多(即以BPC为内角的正多边形的边数越少),会标的外轮廓周长越大.当 以BPC为内角的正多边形为等边三角形时,会
6、标的外轮廓周长最大.此时APB=150,以APB,APC 为内角的两个正多边形均为正十二边形,会标的外轮廓周长为10+10+1=21. 考点二 平行四边形 1.(2016厦门,5,4分)如图,DE是ABC的中位线,过点C作CFBD交DE的延长线于点F,则下列结论正确 的是( ) A.EF=CF B.EF=DE C.CFDE 答案答案 B DE是ABC的中位线,DEBC,DE=BC,又CFBD,四边形BCFD是平行四边形, DF=BC,DE=DF,DE=EF. 1 2 1 2 2.(2018内蒙古呼和浩特,8,3分)顺次连接平面上A、B、C、D四点得到一个四边形,从ABCD;BC= AD;A=C
7、;B=D四个条件中任取其中两个,可以得出“四边形ABCD是平行四边形”这一结 论的情况共有( ) A.5种 B.4种 C.3种 D.1种 答案答案 C 能够得出“四边形ABCD是平行四边形”这一结论的情况有、,共三种.故选 C. 3.(2019陕西,8,3分)如图,在矩形ABCD中,AB=3,BC=6.若点E、F分别在AB、CD上,且BE=2AE,DF=2 FC,G、H是AC的三等分点,则四边形EHFG的面积为( ) A.1 B. C.2 D.4 3 2 答案答案 C 在矩形ABCD中,AD=BC=6,AB=CD=3, BE=2AE,E是AB的三等分点(靠近点A), G是AC的三等分点(靠近点
8、A), EGBC且EG=BC=2. 同理可得HFAD且HF=AD=2. 又ADBC,EGHF, 四边形EHFG为平行四边形. 又EG与HF间的距离为AB, S四边形EHFG=2AB=2. 1 3 1 3 1 3 1 3 思路分析思路分析 首先证明EGBC,EG=BC,同理可得FHAD,FH=AD,进而可得四边形EHFG为平行四边 形,然后求出平行四边形EHFG的底和高即可得解. 1 3 1 3 4.(2016泉州,17,4分)如图,在四边形ABCD中,ABDC,E是AD的中点,EFBC于点F,BC=5,EF=3. (1)若AB=DC,则四边形ABCD的面积S= ; (2)若ABDC,则此时四边
9、形ABCD的面积S S(用“”或“=”或“DC时,四边形ABCD的面积S=S. 5.(2018陕西,14,3分)如图,点O是ABCD的对称中心,ADAB,E、F是AB边上的点,且EF=AB;G、H是 BC边上的点,且GH=BC.若S1,S2分别表示EOF和GOH的面积,则S1与S2之间的等量关系是 . 1 2 1 3 答案答案 2S1=3S2 1221 32 23 SSSS 或均正确 解析解析 如图,连接AC,BD,交点为O,四边形ABCD为平行四边形, AO=OC, SABO=SOBC, EF=AB, S1=SABO, GH=BC, S2=SOBC,2S1=3S2. 1 2 1 2 1 3
10、1 3 6.(2018福建,18,8分)如图,ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求 证:OE=OF. 解后反思解后反思 本题考查平行四边形的性质、平行线的性质、全等三角形的判定与性质等基础知识. 证明证明 四边形ABCD是平行四边形, OD=OB,ADBC, ODE=OBF. 又DOE=BOF, DOEBOF, OE=OF. 7.(2019贵州贵阳,18,10分)如图,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD. (1)求证:四边形BCED是平行四边形; (2)若DA=DB=2,cos A=,求点B到点E的距离. 1 4
11、解析解析 (1)证明:四边形ABCD是平行四边形, ADBC,AD=BC, 又点E在AD的延长线上,且DE=AD, DEBC,DE=BC, 四边形BCED是平行四边形. (2)DA=DB=2,且四边形ABCD是平行四边形, DA=DB=BC=2, 由(1)知四边形BCED是平行四边形, 四边形BCED是菱形. 连接BE,易知BEDC,BEAB, 在RtABE中,AE=2DA=4,cos A=, AB=AEcos A=4=1, BE=, 1 4 1 4 22 4115 点B到点E的距离是. 15 8.(2019福建,21,8分)在RtABC中,ABC=90,ACB=30.将ABC绕点C顺时针旋转
12、一个角度得到 DEC,点A,B的对应点分别为D,E. (1)若点E恰好落在边AC上,如图1,求ADE的大小; (2)若=60,F为AC的中点,如图2,求证:四边形BEDF是平行四边形. 解析解析 本题考查图形的旋转、直角三角形、等腰三角形、等边三角形、三角形内角和、平行四边形的 判定等基础知识,考查运算能力、推理能力. (1)在RtABC中,ABC=90,ACB=30,BAC=60. 由旋转性质得,DC=AC,DCE=ACB=30. DAC=ADC=(180-DCE)=75, 又EDC=BAC=60, ADE=ADC-EDC=15. (2)证明:在RtABC中,ABC=90,ACB=30, A
13、B=AC. F是AC的中点, BF=FC=AC, FBC=ACB=30,AB=BF. 1 2 1 2 1 2 由旋转性质得AB=DE,DEC=ABC=90,BCE=ACD=60, DE=BF. 延长BF交EC于点G,则BGE=GBC+GCB=90, BGE=DEC, DEBF, 四边形BEDF是平行四边形. 一题多解一题多解 (2)在RtABC中,ABC=90,ACB=30, AB=AC,A=60. F是AC的中点,AF=BF=FC=AC,AB=BF=FC. 由旋转性质得AB=DE,EDC=A=60,ACD=60. DE=BF,DE=FC,EDC=ACD. CD=DC,EDCFCD.CE=DF
14、. 由旋转性质得BEC为等边三角形, CE=BE,DF=BE. 又DE=BF,四边形BEDF是平行四边形. 1 2 1 2 9.(2020内蒙古呼和浩特,18,8分)如图,正方形ABCD中,G是BC边上任意一点(不与B、C重合),DEAG于 点E,BFDE,且交AG于点F. (1)求证:AF-BF=EF; (2)四边形BFDE能否为平行四边形?如果能,请指出此时点G的位置;如果不能,请说明理由. 解析解析 (1)证明:由题意可知AB=AD,BAF+DAE=90, DEAG, DAE+ADE=90, ADE=BAF, 又BFDE, BFA=90=AED, ABFDAE(AAS), BF=AE,
15、AF-BF=AF-AE=EF. (2)不可能,理由: 假设四边形BFDE是平行四边形, 已知DEBF,则当DE=BF时,四边形BFDE为平行四边形, 由(1)知DE=AF, BF=AF,即此时BAF=45,此时点G与点C重合, 而点G不与C重合, BAF45,矛盾, 四边形BFDE不能是平行四边形. 10.(2016泉州,26,13分)如图,在四边形ABCD中,ADBC,A=C,点P在边AB上. (1)判断四边形ABCD的形状并加以证明; (2)若AB=AD,以过点P的直线为轴,将四边形ABCD折叠,使点B、C分别落在点B、C上,且BC经过点D, 折痕与四边形的另一交点为Q. 在图2中作出四边
16、形PBCQ(保留作图痕迹,不必说明作法和理由); 如果C=60,那么为何值时,BPAB? AP PB 解析解析 (1)四边形ABCD是平行四边形.理由如下: ADBC, A+B=180. 又A=C, B+C=180, ABDC, 四边形ABCD是平行四边形.(两组对边分别平行的四边形是平行四边形) (2)如图,四边形PBCQ即为所求. 过点B作BHAD于H,设BP与AD相交于点E. C=60,A=C=60,PBC=120. BPAB,1=2=30, PBD=PBC=120, 3=30=2,BE=BD,DE=2EH. 设AP=a,PB=b,则PB=PB=b. 在RtAPE中,A=60, PE=a
17、,AE=2a. 3 BE=BP-PE=b-a. 在RtBEH中,EH=BEcos 30=(b-a), 又AB=AD=AE+DE=AE+2EH, a+b=2a+2(b-a), (-1)b=2a, =,即=. 当=时,BPAB. 3 3 2 3 3 2 3 3 a b 31 2 AP PB 31 2 AP PB 31 2 11.(2018重庆,24,10分)如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE, 连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G. (1)若AH=3,HE=1,求ABE的面积; (2)若ACB=45,求证:DF=C
18、G. 2 解析解析 (1)AH=3,HE=1,AB=AE, AB=AE=AH+HE=4. BGAE,AHB=90.AB2=AH2+BH2. BH=. SABE=AE BH=4=2.(4分) (2)证明:四边形ABCD为平行四边形, ADBC,AD=BC,FAO=ECO. 点O为AC的中点,AO=CO. 在AOF和COE中, FAO=ECO,AO=CO,AOF=COE, AOFCOE,AF=CE. DF=BE.(6分) 如图,过点A作AMBC交BC于点M,交BG于点Q,过点G作GNBC,交BC于点N. 22 ABAH 22 437 1 2 1 2 77 AMB=AME=GNC=GNB=90. A
19、HB=AMB. AQH=BQM,QAH=GBN. AB=AE,AMBE, BAM=QAH,BM=ME. BAM=QAH=GBN. ACB=45,AMBE,CAM=ACB=45. BAG=45+BAM,BGA=45+GBN, BAG=BGA. AB=GB. AB=AE,AE=BG. 在AME和BNG中, AME=BNG,EAM=GBN,AE=BG, AMEBNG. ME=NG. BE=2ME=2NG. 在RtGNC中,GCN=45,CG=NG. CG=2NG,即BE=2NG=CG. DF=BE=CG.(10分) 2 22 2 思路分析思路分析 (1)根据勾股定理求出BH的长,进而利用三角形的面积
20、公式求得ABE的面积;(2)根据平行 四边形的性质和全等三角形可得BE=DF.过点A作AMBC,过点G作GNBC,根据等腰三角形的性质得 BAM=QAH,BM=ME=BE,通过求证BAM=GBN,可得BAG=BGA,进而可得AB=AE=BG,利用 AMEBNG,得出NG=ME=BE,最后利用CG=NG得出DF=BE=CG. 1 2 1 2 22 方法指导方法指导 对于以特殊四边形为背景的全等三角形的判定,一般都是通过特殊四边形的性质找出证全 等所需要的边或角的相等关系,从而进行证明. 教师专用题组 考点一 多边形 1.(2019贵州贵阳,6,3分)如图,正六边形ABCDEF内接于O,连接BD,
21、则CBD的度数是( ) A.30 B.45 C.60 D.90 答案答案 A 在正六边形ABCDEF中,BCD=120,BC=CD, CBD=(180-120)=30,故选A. (62) 180 6 1 2 思路分析思路分析 根据正六边形的内角和求得BCD的度数,然后根据等腰三角形的性质即可得到结果. 2.(2019云南,9,4分)一个十二边形的内角和等于( ) A.2 160 B.2 080 C.1 980 D.1 800 答案答案 D 根据多边形的内角和公式(n-2) 180,可得十二边形的内角和等于(12-2)180=1 800.故选D. 3.(2017辽宁沈阳,10,2分)正六边形AB
22、CDEF内接于O,正六边形的周长是12,则O的半径是( ) A. B.2 C.2 D.2 3 23 答案答案 B 由正六边形的周长是12,可得BC=2,连接OB、OC,则BOC=60,所以BOC为等边三 角形,所以OB=BC=2,即O的半径为2,故选B. 360 6 4.(2020陕西,12,3分)如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则BDM的度数是 . 答案答案 144 解析解析 在正五边形ABCDE中,C=108,BC=CD, CDB=36, BDM=180-CDB=180-36=144. 180 2 C 5.(2018贵州贵阳,13,4分)如图,点M,N分别是正
23、五边形ABCDE的两边AB,BC上的点,且AM=BN,点O是正五 边形的中心,则MON的度数是 度. 答案答案 72 解析解析 解法一:连接OA,OB,O为正五边形ABCDE的中心, OAM=OBN,又OA=OB,AM=BN,OAMOBN,AOM=BON,MON=AOB= =72. 解法二(特殊位置法):当OMAB,ONBC时,MON=180-B=72. 360 5 解法三:作OPAB,OQBC,如图所示. 易证RtOPMRtOQN,则POM=QON, MON=POQ=180-B=72. 6.(2017上海,18,4分)我们规定:一个正n边形(n为整数,n4)的最短对角线与最长对角线长度的比值
展开阅读全文