2021年广东中考数学复习练习课件:§5.2 与圆有关的计算.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年广东中考数学复习练习课件:§5.2 与圆有关的计算.pptx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 广东 中考 数学 复习 练习 课件 5.2 有关 计算 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、 中考数学 (广东专用) 5.2 与圆有关的计算 考点 弧长、扇形面积的计算 A组 20162020年广东中考题组 1.(2020广东,16,4分)如图,从一块半径为1 m的圆形铁皮上剪出一个圆周角为120的扇形ABC,如果将剪 下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m. 答案答案 1 3 解析解析 连接OA,OB,根据已知得BAO=BAC=120=60. 又OA=OB,AOB是等边三角形, AB=OA=1 m. BAC=120, 弧BOC的长为=(m). 设圆锥的底面圆的半径为r m,根据扇形围成圆锥底面圆的周长等于扇形的弧长可得2r=,r=. 1 2 1 2 120 180 A
2、B2 3 2 3 1 3 思路分析思路分析 连接OA,OB,首先证明AOB是等边三角形,进而求得AB的长,然后利用弧长公式可以计算弧 BOC的长,最后根据扇形围成圆锥底面圆的周长等于扇形的弧长求出底面圆的半径. 2.(2019广州,15,3分)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面 展开扇形的弧长为 .(结果保留) 答案答案 2 2 解析解析 主视图是直角边长为2的等腰直角三角形, 此等腰直角三角形的斜边长为=2, 此圆锥的底面圆的直径为2, 圆锥的底面圆的周长为2. 圆锥侧面展开扇形的弧长等于圆锥底面圆的周长, 该圆锥侧面展开扇形的弧长为2. 22 222
3、 2 2 2 解题关键解题关键 本题考查了圆锥,三视图,勾股定理等相关知识,其解题关键是熟知圆锥侧面展开扇形的弧长 等于圆锥底面圆的周长. 3.(2016广州,15,3分)如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,AB=12 , OP=6,则劣弧的长为 (结果保留). 3 AB 答案答案 8 解析解析 连接AO,由于弦AB为小圆的切线,点P为切点,故OPAB,AP=BP=AB=6.在RtAOP中,tan AOP=,OA=12,AOP=60. 连接OB,则AOB=120,l=8. 1 2 3 AP OP 3 22 APOP AB 120 12 180 思路分析思路分
4、析 连接AO,BO,利用直角三角形的边、角关系求出大圆的半径OA和AOP的度数,然后利用圆 的性质求出AOB,进而求出弧长. 解题关键解题关键 求出大圆的半径及劣弧所对圆心角的度数. AB 4.(2018广东,15,4分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴 影部分的面积为 .(结果保留) 答案答案 解析解析 连接OE.阴影部分的面积=SBCD-(S正方形OECD-S扇形OED)=24-=. 1 2 2 1 22-2 4 一题多解一题多解 如图,连接OE,交BD于点H,则SBEH=SOHD,所以阴影部分的面积=S扇形OED=22=. 1
5、 4 5.(2019广东,22,7分)在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,ABC 的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F. (1)求ABC三边的长; (2)求图中由线段EB、BC、CF及所围成的阴影部分的面积. EF FE 解析解析 (1)由题图可知AB2=22+62=40, AB=2.(1分) AC2=22+62=40, AC=2.(2分) BC2=42+82=80, BC=4.(3分) (2)连接AD,由(1)知AB2+AC2=BC2,AB=AC, ABC是等腰直角三角形,BAC=90.(4分) 10 10 5 以
6、点A为圆心的与BC相切于点D, ADBC, AD=BC=2.(5分) SABC=BC AD=42=20, 又S扇形EAF=(2)2=5, S阴影=20-5.(7分) EF 1 2 5 1 2 1 2 5 5 1 4 5 思路分析思路分析 (1)在网格中,求端点在格点上的线段的长度,常用的方法是构造直角三角形,利用勾股定理求 出线段的长度;(2)求不规则图形的面积常用的方法是割补法,本题需用ABC的面积减去扇形EAF的面 积,利用勾股定理的逆定理求得圆心角,由过切点的半径垂直切线,可知ADBC,由ABC是等腰直角三 角形,可知半径AD等于BC长的一半,进而求得扇形EAF的面积. B组 20162
7、020年全国中考题组 考点一 弧长、扇形面积的计算 1.(2020云南,13,4分)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径画圆弧DE得到扇形DAE(阴影 部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是 ( ) A. B.1 C. D. 2 2 2 1 2 答案答案 D 在正方形ABCD中,AD=4,DAE=45,S扇形DAE=2.设以扇形DAE为侧面展开图的圆 锥底面圆的半径为r,则4r=2,r=.故选D. 2 454 360 1 2 2.(2019云南,11,4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )
8、A.48 B.45 C.36 D.32 答案答案 A 设半圆的半径为R,则S侧=R2=82=32. 设圆锥的底面圆半径为r,则2r=2R, r=R=8=4, S底=r2=42=16. S全=S侧+S底=32+16=48.故选A. 1 2 1 2 1 2 1 2 1 2 3.(2017甘肃兰州,12,4分)如图,正方形ABCD内接于半径为2的O,则图中阴影部分的面积为( ) A.+1 B.+2 C.-1 D.-2 答案答案 D 连接AC,OD, 则AC=4,所以正方形ABCD的边长为2,所以正方形ABCD的面积为8.由题意可知,O的面积为4.根据 图形的对称性,知S阴影=S扇形OAD-SOAD=
9、-2,故选D. 2 方法规律方法规律 求阴影部分的面积,特别是不规则几何图形的面积时,常通过平移、旋转、割补等方法,把不 规则图形面积转化为规则图形面积的和或差来求解. 思路分析思路分析 把阴影部分的面积转化成一个扇形的面积减去一个三角形的面积进行解答. 4.(2020吉林,14,3分)如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫 做“筝形”.筝形ABCD的对角线AC,BD相交于点O,以点B为圆心,BO长为半径画弧,分别交AB,BC于点E, F.若ABD=ACD=30,AD=1,则的长为 (结果保留). EF 答案答案 2 解析解析 AB=CB,AD=
10、CD,BD=BD, CAD=ACD,ABDCBD, ABD=CBD,ACBD. ABD=ACD=30,AD=1, OD=AD=,OA=OD=, OB=OA=. ABD=30,EBF=60, 的长=. 1 2 1 2 3 3 2 3 3 2 EF 3 60 2 180 2 解题关键解题关键 本题主要考查了等腰三角形三线合一的性质和弧长计算公式,熟练掌握等腰三角形的性质 和弧长公式是解题的关键. 5.(2018云南,22,9分)如图,已知AB是O的直径,C是O上的点,点D在AB的延长线上,BCD=BAC. (1)求证:CD是O的切线; (2)若D=30,BD=2,求图中阴影部分的面积. 解析解析
11、(1)证明:连接OC. AB是O的直径,C是O上的点, ACB=90,即ACO+OCB=90. OA=OC,ACO=BAC. 又BCD=BAC, ACO=BCD. BCD+OCB=90, OCD=90,OCCD. 又OC是O的半径,CD是O的切线. (2)D=30,OCD=90, BOC=60,OD=2OC, AOC=120,BAC=30. 设O的半径为x,则OB=OC=x, x+2=2x,解得x=2. 过点O作OEAC,垂足为点E, 在RtOEA中,OE=OA=1,AE=, AC=2. S阴影=S扇形AOC-SAOC=-21 =-. 1 2 22 -AO OE 22 2 -13 3 2 12
12、02 360 1 2 3 4 3 3 考点二 圆内接正多边形 1.(2019贵州贵阳,6,3分)如图,正六边形ABCDEF内接于O,连接BD,则CBD的度数是( ) A.30 B.45 C.60 D.90 思路分析思路分析 根据正六边形的内角和求得BCD的度数,然后根据等腰三角形的性质即可得到结果. 答案答案 A 在正六边形ABCDEF中,BCD=120,BC=CD,CBD=(180-120)=30, 故选A. 1 2 2.(2019四川成都,9,3分)如图,正五边形ABCDE内接于O,P为上的一点(点P不与点D重合),则CPD 的度数为( ) A.30 B.36 C.60 D.72 DE 答
13、案答案 B 连接CO,DO, 五边形ABCDE为正五边形, COD=360=72, CPD=COD=36, 故选B. 1 5 1 2 3.(2018辽宁沈阳,10,2分)如图,正方形ABCD内接于O,AB=2,则的长是( ) A. B. C.2 D. 2 AB 3 2 1 2 答案答案 A 连接AC、BD交于点O, 四边形ABCD是正方形, BAD=ABC=BCD=CDA=90, AC、BD是直径, 点O与点O重合, AOB=90,AO=BO, 又AB=2,AO=2, 的长为=. 2 AB 90 2 180 方法总结方法总结 求弧长一般需要两个条件,一个是圆心角度数,一个是圆半径.常用连接半径
14、的方法,构造等腰 三角形,或加上弦心距,构造直角三角形求解. 思路分析思路分析 由正方形的性质可得,AOB=90,又AO=BO,由勾股定理可得圆的半径,将所得到的结果代 入弧长公式即可. 4.(2020内蒙古呼和浩特,23,10分)某同学在学习了正多边形和圆之后,对正五边形的边及相关线段进行 研究,发现多处出现著名的黄金分割比0.618.如图,圆内接正五边形ABCDE,圆心为O,OA与BE交 于点H,AC,AD与BE分别交于点M、N.根据圆与正五边形的对称性,只对部分图形进行研究.(其他可同理 得出) (1)求证:ABM是等腰三角形且底角等于36,并直接说出BAN的形状; (2)求证:=,且其
15、比值k=; (3)由对称性知AOBE,由(1)(2)可知也是一个黄金分割数,据此求sin 18的值. 5-1 2 BM BN BN BE 5-1 2 MN BM 解析解析 (1)连接圆心O与正五边形除A外的各顶点, 在正五边形中,AOE=3605=72, ABE=AOE=36,同理BAC=72=36, AM=BM, ABM是等腰三角形且底角等于36. BOD=BOC+COD=72+72=144, BAD=BOD=72, BNA=180-BAD-ABE=72, AB=NB,即ABN为等腰三角形. 1 2 1 2 1 2 (2)证明:ABM=ABE,AEB=AOB=36=BAM, BAMBEA,
16、=,而AB=BN, =,设BM=y,AB=x,则AM=AN=y,AE=BN=x, AMN=MAB+MBA=72=BAN,ANM=ANB, AMNBAN, 1 2 BM AB AB BE BM BN BN BE =,即=,则y2=x2-xy, 两边同除以x2,得=1-,设=t, 则t2+t-1=0,解得t=或(舍), =. (3)MAN=36,根据对称性可知:MAH=NAH=MAN=18,而AOBE,=, sin 18=sinMAH=. AM AB MN AN y x -x y y 2 y x y x y x 5-1 2 -1- 5 2 BM BN BN BE y x 5-1 2 1 2 MN
17、BM 5-1 2 MH AM 1 2 MN AM2 MN BM 5-1 4 C组 教师专用题组 考点一 弧长、扇形面积的计算 1.(2020湖南常德,6,3分)一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是( ) A.100 B.200 C.100 D.200 33 55 答案答案 C 这个圆锥的母线长=10, 则这个圆锥的侧面积=21010=100. 故选C. 22 1020 5 1 2 55 思路分析思路分析 先利用勾股定理计算出圆锥的母线长,然后利用扇形的面积公式计算这个圆锥的侧面积. 2.(2016山东青岛,7,3分)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角
18、为120,AB长为25 cm, 贴纸部分的宽BD为15 cm,若纸扇两面贴纸,则贴纸的面积为( ) A.175 cm2 B.350 cm2 C. cm2 D.150 cm2 800 3 答案答案 B AB=25 cm,BD=15 cm, AD=25-15=10(cm). S扇形BAC=(cm2), S扇形DAE=(cm2), 贴纸的面积为2=350(cm2),故选B. 2 12025 360 625 3 2 120 10 360 100 3 625 100 - 33 3.(2016重庆,9,4分)如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积 是( ) A.
19、 B.+ C. D.+ 2 4 1 2 4 2 1 2 2 答案答案 A AB为直径,ACB=90. 又AC=BC=, ACB为等腰直角三角形, OCAB,AOC和BOC都是等腰直角三角形, SAOC=SBOC,OA=1, S阴影部分=S扇形AOC=.故选A. 2 2 90 1 360 4 4.(2019湖北武汉,9,3分)如图,AB是O的直径,M,N是(异于A,B)上两点,C是上一动点,ACB的平 分线交O于点D,BAC的平分线交CD于点E.当点C从点M运动到点N时,C,E两点的运动路径长的比是 ( ) A. B. C. D. AB MN 2 2 3 2 5 2 答案答案 A 如图,由题意可
20、知1=2,3=4.连接AD,可得2=6=1.5=1+3,EAD=4+ 6=3+1,DE=DA,即点E在以点D为圆心,AD为半径的圆上运动.6=2=45,AD=AO.设 O的半径为r,劣弧MN所对的圆心角为n,则C,E两点的运动路径长的比是=.故选A. 2 180 2 2 180 n r n r 2 5.(2020新疆,14,5分)如图,O的半径是2,扇形BAC的圆心角为60,若将扇形BAC剪下围成一个圆锥,则此 圆锥的底面圆的半径为 . 答案答案 3 3 解析解析 连接OA,作ODAC于点D. 在直角OAD中,OA=2,OAD=BAC=30, 则AD=OA cos 30=, 则AC=2AD=2
21、, 则扇形的弧长是=. 设此圆锥的底面圆的半径是r,则2r=, 解得r=. 故此圆锥的底面圆的半径为. 1 2 3 3 602 3 180 2 3 3 2 3 3 3 3 3 3 6.(2019重庆A卷,16,4分)如图,在菱形ABCD中,对角线AC,BD交于点O,ABC=60,AB=2.分别以点A、点 C为圆心,以AO的长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为 .(结果保留) 答案答案 2- 3 2 3 解析解析 四边形ABCD为菱形, ACBD,BD平分ABC,OA=OC,OB=OD,ADBC. ABO=ABC=60=30. 在RtAOB中,OA=AB=2=1,OB=, O
展开阅读全文