2021年北京中考数学复习练习课件:§5.1 图形的轴对称、平移与旋转.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年北京中考数学复习练习课件:§5.1 图形的轴对称、平移与旋转.pptx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 北京 中考 数学 复习 练习 课件 5.1 图形 轴对称 平移 旋转 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、 中考数学 (北京专用) 第五章 空间与图形 5.1 图形的轴对称、平移与旋转 北京中考题组 1.(2020北京,4,2分)下列图形中,既是中心对称图形也是轴对称图形的是( ) 答案答案 D 选项A不是中心对称图形,是轴对称图形; 选项B既不是中心对称图形也不是轴对称图形; 选项C是中心对称图形,不是轴对称图形; 选项D既是中心对称图形也是轴对称图形. 故选D. 2.(2019北京,2,2分)下列倡导节约的图案中,是轴对称图形的是( ) 答案答案 C 选项A、B、D不是轴对称图形,选项C是轴对称图形.故选C. 3.(2017北京,5,3分)下列图形中,是轴对称图形但中心对称图形的是( ) 不是
2、 答案答案 A 选项A中的图形是轴对称图形但不是中心对称图形; 选项B、D中的图形既是轴对称图形又是中心对称图形; 选项C中的图形是中心对称图形但不是轴对称图形. 故选A. 4.(2016北京,7,3分)甲骨文是我国的一种古代文字,是汉字的早期形式.下列甲骨文中,轴对称图形的 是( ) 不是 答案答案 D 选项A、B、C都是轴对称图形,故选D. 5.(2017北京,15,3分)如图,在平面直角坐标系xOy中,AOB可以看作是OCD经过若干次图形的变化(平 移、轴对称、旋转)得到的,写出一种由OCD得到AOB的过程: . 答案答案 将OCD以点C为旋转中心按顺时针方向旋转90,再向左平移2个单位
3、长度(答案不唯一) 教师专用题组 考点一 轴对称的概念及性质 1.(2019河北,9,3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形, 使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为( ) A.10 B.6 C.3 D.2 答案答案 C 正三角形恰有三条对称轴,所以联想把图中的三个小正三角形涂黑,而当n=1或2时,不能出现 符合题意的新图案,所以n的最小值为3,故选C. 2.(2019辽宁大连,9,3分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF.若AB=4,BC=8,则DF的 长为( ) A.2 B.4 C.3 D
4、.2 5 答案答案 C 四边形ABCD为矩形,AB=4,BC=8, AD=BC=8,CD=AB=4,D=90, 由折叠可得AD=CD=4,D=D=90,FD=FD, 设FD=x,则FD=FD=x,AF=AD-FD=8-x, 在RtADF中,AD2+FD2=AF2,即42+x2=(8-x)2,解得x=3,FD=3,故选C. 3.(2018天津,10,3分)如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕 为BD,则下列结论一定正确的是( ) A.AD=BD B.AE=AC C.ED+EB=DB D.AE+CB=AB 答案答案 D 由折叠的性质知,BC=BE,AE+
5、CB=AB.故选D. 4.(2018新疆,9,5分)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的 中点,则MP+PN的最小值是( ) A. B.1 C. D.2 1 2 2 答案答案 B 如图,取AD的中点M, 连接MN,MP, 则有MP=MP.MP+PN的最小值为线段MN的长, 即为菱形边长1.故选B. 思路分析思路分析 先确定M关于直线AC的对称点M,再借助两点之间线段最短来确定线段和的最小值.有 解题关键解题关键 解决本题的关键是要借助轴对称将MP+PN转化为MP+PN,进而借助两点之间线段最短来解决. 5.(2017内蒙古呼和浩特,3,3分)
6、下图中序号(1)(2)(3)(4)对应的四个三角形,都是ABC这个图形进行了一 次变换之后得到的,其中是通过轴对称得到的是 ( ) A.(1) B.(2) C.(3) D.(4) 答案答案 A 根据轴对称的性质可知,序号(1)对应的三角形与ABC的对应点所连的线段被一条直线(对 称轴)垂直平分,故选A. 6.(2017山西,6,3分)如图,将矩形纸片ABCD沿BD折叠,得到BCD,CD与AB交于点E.若1=35,则2的 度数为( ) A.20 B.30 C.35 D.55 答案答案 A ABCD,C=90, ABD=1=35,DBC=90-1=55, 由折叠的性质得DBC=DBC=55, 2=
7、DBC-ABD=55-35=20. 7.(2017安徽,10,4分)如图,在矩形ABCD中,AB=5,AD=3.动点P满足SPAB=S矩形ABCD.则点P到A,B两点距离之 和PA+PB的最小值为( ) A. B. C.5 D. 1 3 2934241 答案答案 D 如图,过点P作MN,使MNAB,作A点关于MN的对称点A1,连接PA1,A1B,则PA1=PA,设点P到AB 的距离为h,由AB=5,AD=3,SPAB=S矩形ABCD可得h=2,则AA1=4, 因为PA+PB=PA1+PBA1B, 所以当P为A1B与MN的交点时,PA+PB最小, 其最小值为=,故选D. 1 3 22 4541
8、疑难突破疑难突破 本题的突破口是根据SPAB=S矩形ABCD推出P点是在平行于AB的线段上运动,从而想到利用轴 对称的性质将问题转化. 1 3 8.(2016河北,3,3分)下列图形中,既是轴对称图形,又是中心对称图形的是( ) 答案答案 A 选项B只是轴对称图形,选项C和D只是中心对称图形,只有选项A既是轴对称图形,又是中心 对称图形. 9.(2020安徽,14,5分)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线 折叠,使得点B落在CD上的点Q处,折痕为AP;再将PCQ,ADQ分别沿PQ,AQ折叠,此时点C,D落在AP 上的同一点R处.请完成下列探究: (1
9、)PAQ的大小为 ; (2)当四边形APCD是平行四边形时,的值为 . AB QR 答案答案 (1)30 (2) 3 解析解析 (1)由折叠性质可得ADQARQ,PCQPRQ,APQAPB,D=ARQ,DAQ= RAQ,DQA=RQA,C=PRQ,CQP=RQP,B=AQP,QAP=BAP,QAP=BAP= DAQ,又DQA+RQA+CQP+RQP=180,RQA+RQP=90,AQP=90,B=90, ARQ+PRQ=180,C+D=180,ADBC,DAB=90,PAQ=30. (2)当四边形APCD是平行四边形时,由(1)可得四边形ADQR、QRPC是平行四边形,且C=CPQ= QPR=
10、60,QP=CQ,由折叠可知QR=QC=PQ.在RtAQP中,tanQPA=tan 60=,由APQ APB可得AQ=AB,=. AQ PQ 3 AB QR 3 思路分析思路分析 (1)根据折叠性质可得ADQARQ,PCQPRQ,APQAPB,然后根据全等及平 角性质可证QAP=BAP=DAQ,AQP=90,进一步可证ADBC及DAB=90,问题解决;(2)当四边 形APCD是平行四边形时,画出草图,易推出C=CPQ=QPR=60,由折叠可知QR=QC=PQ,AQ=AB,最 后根据tanQPA=tan 60=即可求出结果. AQ PQ 3 解题关键解题关键 利用(1)的结论及锐角三角函数的知识
11、是解答本题的关键. 10.(2019江西,10,3分)如图,在ABC中,点D是BC上的点,BAD=ABC=40,将ABD沿着AD翻折得到 AED,则CDE= . 答案答案 20 解析解析 BAD=ABD=40, ADB=180-BAD-ABD=180-40-40=100, ADC=180-100=80. AED是由ABD翻折所得的, AEDABD, ADE=ADB=100. CDE=ADE-ADC=100-80=20. 11.(2019福建,16,4分)如图,菱形ABCD的顶点A在函数y=(x0)的图象上,函数y=(k3,x0)的图象关于 直线AC对称,且过B,D两点.若AB=2,BAD=30
12、,则k= . 3 x k x 答案答案 6+2 3 解析解析 连接AC,过B作BFx轴于F,过A作AMBF于M.如图. 由双曲线的对称性可知,点A,C是第一象限角平分线上的点, 即xA=yA,=3,即xA=,A(,). 根据题意可得CAM=45, BAC=BAD=30=15, BAM=30, BM=AB=2=1. AM=. 2 A x333 1 2 1 2 1 2 1 2 22 ABBM 2 213 B(2,1+). k=2(1+)=6+2. 33 333 疑难突破疑难突破 本题的突破口是得到CAM=45,能将点的坐标转化为线段长,构建含30角的RtABM. 12.(2018重庆,16,4分)
13、如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,得到AGE =30,若AE=EG=2 厘米,则ABC的边BC的长为 厘米. 3 答案答案 (6+4) 3 解析解析 过E作EHAG于H. AGE=30,AE=EG=2, EH=,GH=EGcos 30=3,AG=6, GC=AG=6,易知BE=AE=EG=2, BC=BE+EG+GC=(6+4)厘米. 3 3 3 3 13.(2020四川成都,27,10分)在矩形ABCD的CD边上取一点E,将BCE沿BE翻折,使点C恰好落在AD边上 点F处. (1)如图1,若BC=2BA,求CBE的度数; (2)如图2,当AB=5,且AF
14、 FD=10时,求BC的长; (3)如图3,延长EF,与ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,求的值. AB BC 解析解析 (1)由翻折可知BC=BF,EBC=EBF, BC=2BA,BF=2AB,又A=90, AFB=30, ADBC, FBC=AFB=30, CBE=FBC=15. (2)由翻折可知BC=BF,BFE=C=90, 易知ABFDFE,=, AF DF=AB DE. AF DF=10,AB=5, DE=2,FE=CE=3, DF=, AF=2. 1 2 AF DE AB DF 22 325 5 BC=AD=AF+DF=3. (3)过点N作NGBF于
15、点G, BN平分ABF,NABA,AN=NG. NGF=A=90,AFB=GFN, NFGBFA,NF=AN+FD,NF=AD=BC=BF, =,NG=AN=AB, 在RtABF中,AB2+AF2=BF2, AB2+=BC2,化简得5AB2+2AB BC-3BC2=0,解得=. 5 1 2 1 2 1 2NG AB FG FA NF BF 1 21 2 2 11 22 ABBC AB BC 3 5 1 AB BC 舍去 方法总结方法总结 解决矩形的折叠问题,要注意折叠前后图形间的全等关系及平行线间的内错角相等.求 长度或比值问题,要注意寻找与所求线段或已知线段有关的相似三角形.几何证明题中要先
16、注意 “K”“X”“A”型的相似三角形的相似比,再进行线段的等量代换. 考点二 平移的概念及性质 1.(2019四川成都,4,3分)在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为 ( ) A.(2,3) B.(-6,3) C.(-2,7) D.(-2,-1) 答案答案 A 点向右平移4个单位长度,其横坐标加4,所以平移后得到的点的坐标为(2,3),故选A. 2.(2018江西,5,3分)小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成 的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后 的正方形的顶
17、点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有( ) A.3个 B.4个 C.5个 D.无数个 答案答案 C 如图所示,正方形ABCD可以向上、向下、向右以及沿射线AC或BD方向平移,平移前后的两 个正方形组成轴对称图形.故选C. 3.(2016山东青岛,5,3分)如图,线段AB经过平移得到线段AB,其中点A,B的对应点分别为点A,B,这四个点 都在格点上.若线段AB上有一个点P(a,b),则点P在AB上的对应点P的坐标为( ) A.(a-2,b+3) B.(a-2,b-3) C.(a+2,b+3) D.(a+2,b-3) 答案答案 A 线段AB向左平移2个单位长度,再向上平
18、移3个单位长度得到线段AB,由此可知线段AB上的 点P(a,b)的对应点P的坐标为(a-2,b+3),故选A. 评析评析 在平面直角坐标系中,点的平移与其坐标变化的关系是“上加下减,右加左减”,即点向上(或下) 平移a个单位长度,则纵坐标加a(或减a);点向右(或左)平移b个单位长度,则横坐标加b(或减b). 4.(2020广东广州,14,3分)如图,点A的坐标为(1,3),点B在x轴上,把OAB沿x轴向右平移到ECD,若四边 形ABDC的面积为9,则点C的坐标为 . 答案答案 (4,3) 解析解析 CED由AOB向右平移所得,点A的坐标为(1,3), 点C的纵坐标为3. 易知四边形ABDC为
19、平行四边形, S四边形ABDC=3BD=9, BD=3,AC=BD=3. 点C的坐标为(4,3). 解题关键解题关键 能根据已知条件求出AC的长度是解题的关键. 5.(2017山西,13,3分)如图,已知ABC三个顶点的坐标分别为A(0,4),B(-1,1),C(-2,2).将ABC向右平移4 个单位,得到ABC,点A,B,C的对应点分别为A,B,C,再将ABC绕点B顺时针旋转90,得到AB C,点A,B,C的对应点分别为A,B,C,则点A的坐标为 . 答案答案 (6,0) 解析解析 如图,点A的坐标为(6,0). 6.(2019安徽,16,8分)如图,在边长为1个单位长度的小正方形组成的12
20、12网格中,给出了以格点(网格线 的交点)为端点的线段AB. (1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD; (2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可) 解析解析 (1)如图,线段CD即为所求作.(4分) (2)如图,菱形CDEF即为所求作(答案不唯一).(8分) 7.(2018福建,21,8分)如图,在RtABC中,C=90,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋 转90得到,EFG由ABC沿CB方向平移得到,且直线EF过点D. (1)求BDF的大小; (2)求CG的长. 解析解析 (1)线段
21、AD由线段AB绕点A按逆时针方向旋转90得到, DAB=90,AD=AB=10. ABD=45. EFG由ABC沿CB方向平移得到, ABEF, BDF=ABD=45. (2)由平移的性质可得AECG,ABEF,且AE=CG. DEA=DFC=ABC,ADE+DAB=180, DAB=90,ADE=90, ACB=90,ADE=ACB,ADEACB,=, AD AC AE AB AC=8,AB=AD=10,AE=,CG=AE=. 25 2 25 2 解后反思解后反思 本题考查图形的平移与旋转、平行线的性质、等腰直角三角形的判定与性质、解直角三角 形、相似三角形的判定与性质等基础知识,考查运算能
22、力、推理能力、数形结合思想、化归与转化思想. 解析解析 (1)线段AD由线段AB绕点A按逆时针方向旋转90得到, DAB=90,AD=AB=10. ABD=45. EFG由ABC沿CB方向平移得到, ABEF, BDF=ABD=45. (2)由平移的性质可得AECG,ABEF,且AE=CG. DEA=DFC=ABC,ADE+DAB=180, DAB=90,ADE=90, ACB=90,ADE=ACB,ADEACB,=, AD AC AE AB AC=8,AB=AD=10,AE=,CG=AE=. 25 2 25 2 考点三 旋转的概念及性质 1.(2020山东青岛,5,3分)如图,将ABC先向上
23、平移1个单位,再绕点P按逆时针方向旋转90,得到ABC, 则点A的对应点A的坐标是( ) A.(0,4) B.(2,-2) C.(3,-2) D.(-1,4) 答案答案 D 由题图可知点A的坐标为(4,2),向上平移一个单位后对应点的坐标为(4,3),再绕点P按逆时针 方向旋转90后对应点的坐标为(-1,4),如图所示. 2.(2019河南,10,3分)如图,在OAB中,顶点O(0,0),A(-3,4),B(3,4).将OAB与正方形ABCD组成的图形绕 点O顺时针旋转.每次旋转90,则第70次旋转结束时,点D的坐标为( ) A.(10,3) B.(-3,10) C.(10,-3) D.(3,
展开阅读全文