2021年中考数学复习练习课件:§4.3 等腰三角形与直角三角形.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2021年中考数学复习练习课件:§4.3 等腰三角形与直角三角形.pptx》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 年中 数学 复习 练习 课件 4.3 等腰三角形 直角三角形 下载 _一轮复习_中考复习_数学_初中
- 资源描述:
-
1、 中考数学 4.3 等腰三角形与直角三角形 考点一 等腰三角形 1.(2020四川南充,6,4分)如图,在等腰ABC中,BD为ABC的平分线,A=36,AB=AC=a,BC=b,则CD= ( ) A. B. C.a-b D.b-a 2 ab- 2 a b 答案答案 C AB=AC,A=36,ABC=C=72, BD为ABC的平分线, ABD=DBC=ABC=36, BDC=72=C,ABD=A, BD=BC,BD=AD,AD=BC=b, CD=AC-AD=a-b.故选C. 1 2 2.(2018四川成都,11,4分)等腰三角形的一个底角为50,则它的顶角的度数为 . 答案答案 80 解析解析
2、等腰三角形的两底角相等,一个底角为50, 180-502=80,顶角为80. 3.(2019四川成都,12,4分)如图,在ABC中,AB=AC,点D,E都在边BC上,BAD=CAE,若BD=9,则CE的长 为 . 答案答案 9 解析解析 AB=AC,B=C. 又BAD=CAE,BADCAE(ASA), CE=BD=9. 4.(2020辽宁营口,17,3分)如图,ABC为等边三角形,边长为6,ADBC,垂足为点D,点E和点F分别是线段 AD和AB上的两个动点,连接CE,EF,则CE+EF的最小值为 . 答案答案 3 3 解析解析 过C作CFAB于点F,交AD于E,此时CE+EF的值最小,且CE+
3、EF的最小值为CF的长. ABC为等边三角形,边长为6, BF=AB=6=3, CF=3, CE+EF的最小值为3. 1 2 1 2 22 -BC BF 22 6 -33 3 解题关键解题关键 解决本题的关键是将CE+EF的最小值转化为点C到直线AB的距离,进而借助勾股定理求出 线段CF的长. 5.(2020黑龙江齐齐哈尔,15,3分)等腰三角形的两条边长分别为3和4,则这个等腰三角形的周长是 . 答案答案 10或11 解析解析 等腰三角形的两条边长分别为3和4,计算周长分两种情况讨论: 若3为腰长,则4为底边长,此时周长为3+3+4=10; 若4为腰长,则3为底边长,此时周长为4+4+3=1
4、1. 故其周长为10或11. 6.(2019黑龙江齐齐哈尔,16,3分)等腰ABC中,BDAC,垂足为点D,且BD=AC,则等腰ABC底角的度 数为 . 1 2 答案答案 15或45或75 解析解析 如图1,当BA=BC时, BDAC, AD=CD=AC. BD=AC, AD=BD=CD, A=C=(180-90)=45. 1 2 1 2 1 2 图1 如图2,当AB=AC且A为锐角时, BD=AC=AB, A=30, ABC=ACB=75. 1 2 1 2 图2 如图3,当AB=AC且BAC为钝角时, BD=AC=AB, BAD=30, ABC=ACB=30=15. 同理,当BC=AC时,可
5、求得CBA=CAB=75或15. 故答案为15或45或75. 1 2 1 2 1 2 图3 方法点拨方法点拨 等腰三角形中没有指明顶角、底角或者没有指明底边、腰的都需要分类讨论. 7.(2019吉林,24,8分)性质探究 如图1,在等腰三角形ABC中,ACB=120,则底边AB与腰AC的长度之比为 . 理解运用 (1)若顶角为120的等腰三角形的周长为8+4,则它的面积为 ; (2)如图2,在四边形EFGH中,EF=EG=EH. 求证:EFG+EHG=FGH; 在边FG,GH上分别取中点M,N,连接MN.若FGH=120,EF=10,直接写出线段MN的长. 3 类比拓展 顶角为2的等腰三角形的
6、底边与一腰的长度之比为 (用含的式子表示). 解析解析 性质探究 .(2分) 理解运用 (1)4.(3分) (2)证明:EF=EG=EH, EFG=EGF,EGH=EHG.(5分) EFG+EHG=EGF+EGH=FGH.(6分) 5.(7分) 提示:由可知EFG+EHG=FGH. FGH=120,EFG+EHG=120. FEH+EFG+EHG+FGH=360, FEH=120. 连接FH. 3 3 3 EF=EH, EFH是顶角为120的等腰三角形,由性质探究可知FH=EF. 又EF=10,FH=10. M,N分别为FG和GH的中点, MN为FHG的中位线, MN=FH=5. 类比拓展 2
7、sin .(8分) 3 3 1 2 3 提示:如图,作ADBC于点D, BAD=,BD=ABsin , BC=2ABsin , 底边BC与腰AB的长度之比为2sin . 评分说明评分说明 结果写成1,2sin 1不扣分. 3 考点二 直角三角形 1.(2020河北,16,2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种 正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图中的方式组成图案,使所围成的三角形 是面积最大的直角三角形,则选取的三块纸片的面积分别是( ) A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4 答案答案 B 围
8、成的三角形的三边长就是正方形纸片的边长,根据勾股定理可知选取的三块纸片的面积的 关系为两个面积较小的正方形纸片的面积和等于最大的正方形纸片的面积,所以选项C不符合题意.其 他三个选项,A选项中,直角三角形的面积为1;B选项中,直角三角形的面积为;D选项中,直角三角形的 面积为1,所以选取的三块纸片的面积分别是2,3,5时,所围成的三角形面积最大,故选B. 6 2 解题关键解题关键 熟练掌握勾股定理在直角三角形中的应用,以及直角三角形面积的计算是解本题的关键. 2.(2020贵州贵阳,16,8分)如图,在44的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下 列要求画三角形. (1)在
9、图中,画一个直角三角形,使它的三边长都是有理数; (2)在图中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数; (3)在图中,画一个直角三角形,使它的三边长都是无理数. 解析解析 (答案不唯一)(1)如图. (2)如图. (3)如图. 3.(2019内蒙古呼和浩特,18,6分)如图,在ABC中,内角A、B、C所对的边分别为a、b、c. (1)若a=6,b=8,c=12,请直接写出A与B的和与C的大小关系; (2)求证:ABC的内角和等于180; (3)若=,求证:ABC是直角三角形. - a a bc 1 () 2 abc c 解析解析 (1)CA+B. (2)证明:如图,过点B
10、作直线DEAC, A=ABD,C=CBE. 又ABD+ABC+CBE=180, A+ABC+C=180, ABC的内角和等于180. (3)证明:原式可变形为=, - a ac b2 acb c (a+c)2-b2=2ac, 即a2+2ac+c2-b2=2ac, a2+c2=b2, ABC是以B为直角的直角三角形. 4.(2019贵州贵阳,25,12分) (1)数学理解:如图,ABC是等腰直角三角形,过斜边AB的中点D作正方形DECF,分别交BC,AC于 点E,F,求AB,BE,AF之间的数量关系; (2)问题解决:如图,在任意直角ABC内,找一点D,过点D作正方形DECF,分别交BC,AC于
11、点E,F,若AB= BE+AF,求ADB的度数; (3)联系拓广:如图,在(2)的条件下,分别延长ED,FD,交AB于点M,N,求MN,AM,BN的数量关系. 解析解析 (1)四边形DECF为正方形且D为等腰直角ABC斜边AB的中点, AF=FC=CE=EB=DE=FD. 在RtAFD和RtBED中, AD=AF,BD=BE, AB=AD+BD=(AF+BE). (2)四边形DECF是正方形,DF=DE. 22 2 ABDABD,ADB=ADB, (3)由(2)得,AD,BD分别是CAB和CBA的平分线, MAD=FAD,NBD=EBD. 由题意得EMCA,FNCB, MDA=FAD,NDB=
12、EBD, MDA=MAD,NDB=NBD, AM=MD,ND=BN. 在RtMDN中,MN2=MD2+ND2, MN2=AM2+BN2. 将ADF以点D为旋转中心,逆时针旋转90得到ADE,如图, AD=AD,AF=AE,且ADA=90. AB=BE+AF,AB=BE+AE=AB. 在ABD和ABD中, , , , ADAD ABAB BDBD 难点突破难点突破 对于第(3)问,三条线段在同一直线上,利用“角平分线+平行”得出等腰ADM和等腰 BDN,把所求三条线段转化为直角三角形DMN的三边,问题迎刃而解. 考点一 等腰三角形 教师专用题组 1.(2018河北,8,3分)已知:如图,点P在线
13、段AB外,且PA=PB.求证:点P在线段AB的垂直平分线上.在证明该 结论时,需添加辅助线,则作法不正确的是( ) A.作APB的平分线PC交AB于点C B.过点P作PCAB于点C且AC=BC C.取AB中点C,连接PC D.过点P作PCAB,垂足为C 答案答案 B 无论作APB的平分线PC交AB于点C,还是取AB中点C,连接PC或过点P作PCAB,垂足为C, 都可以通过等腰三角形三线合一得出结论,选项A,C,D的作法正确.故选B. 2.(2017内蒙古包头,6,3分)若等腰三角形的周长为10 cm,其中一边长为2 cm,则该等腰三角形的底边长为 ( ) A.2 cm B.4 cm C.6 c
14、m D.8 cm 答案答案 A 当腰长为2 cm时,底边长为6 cm,但是2+2=40),则BC=3x. 直线MN是BC的垂直平分线, AC BC AD BD 2 3 MNBC,BN=CN=x, MNAE, =, NE=x, BE=BN+EN=x,CE=CN-EN=x, 由勾股定理得AE2=AB2-BE2=AC2-CE2, 即52-=(2x)2-, 解得x=, AC=2x=. 3 2 EN BN AD BD 2 3 5 2 1 2 2 5 2 x 2 1 2 x 10 2 10 6.(2019江苏苏州,18,3分)如图,一块含有45角的直角三角板,外框的一条直角边长为8 cm,三角板的外框 线
15、和与其平行的内框线之间的距离均为 cm,则图中阴影部分的面积为 cm2(结果保留根号). 2 答案答案 (10+12) 2 解析解析 如图,过点A作AGEF,交MN于D,过点C作CHAE于点H. 由题意,知CH=,则AC=2. 由三角形AEF为等腰直角三角形可得EF=8,则AG=4, CD=4-(2+)=3-2,MN=6-4, S阴影=88-(3-2)(6-4)=(10+12)cm2. 2 22 2222 1 2 1 2 222 7.(2019河北,21,9分)已知:整式A=(n2-1)2+(2n)2,整式B0. 尝试 化简整式A. 发现 A=B2.求整式B. 联想 由上可知,B2=(n2-1
16、)2+(2n)2,当n1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值: 直角三角形三边 n2-1 2n B 勾股数组 8 勾股数组 35 解析解析 尝试 A=n4-2n2+1+4n2(2分) =n4+2n2+1.(4分) 发现 A=n4+2n2+1=(n2+1)2, 且A=B2,B0,B=n2+1.(7分) 联想 勾股数组 17(8分) 勾股数组 37(9分) 提示:勾股数组 2n=8,n=4. 由发现可知,B=n2+1=16+1=17. 勾股数组 n2-1=35,B=n2+1=(n2-1)+2=35+2=37. A组 20182020年模拟基础题组 时间:45分钟 分值
17、:60分 一、选择题一、选择题(每小题3分,共12分) 1.(2020甘肃兰州一诊,5)如图所示,在ABC中,AB=AC,B=50,则A=( ) A.50 B.75 C.80 D.50或80 答案答案 C 在ABC中,AB=AC,C=B=50,A=180-B-C=80.故选C. 2.(2020陕西西安高新一中一模,6)如图,在RtABC中,C=90,B=30,AD是BAC的平分线,AC=6,则 点D到AB的距离为( ) A. B. C.2 D.3 3 3 333 答案答案 C 作DEAB于E, C=90,B=30, CAB=60, 又AD是BAC的平分线, CAD=30. AC=6,CD=AC
18、=2. AD是BAC的平分线,C=90,DEAB, DE=CD=2. 故选C. 3 3 3 3 3.(2019贵州毕节3月模拟,11)如图,在ABC中,BAC=90,ADBC,垂足为D,E是边BC的中点,AD=ED= 3,则BC的长为( ) A.3 B.3 C.6 D.6 232 答案答案 D AD=ED=3,ADBC, ADE为等腰直角三角形, 根据勾股定理得AE=3. 在RtABC中,BAC=90,E为BC的中点, AE=BC,BC=2AE=6,故选D. 22 332 1 2 2 4.(2018云南昭通昭阳模拟,2)若一直角三角形两边长分别为12和5,则第三边的长为( ) A.13 B.1
19、3或 C.13或15 D.15 119 答案答案 B 当斜边长是12时,第三边的长是=;当两直角边长是12和5时,第三边的长是 =13.故选B. 22 12 -5 119 22 125 二、填空题二、填空题(每小题3分,共12分) 5.(2020内蒙古包头4月模拟,18)已知等腰三角形的底角是30,腰长为2,则它的周长是 . 3 答案答案 6+4 3 解析解析 作ADBC于D, AB=AC,BD=DC. 在RtABD中,B=30, AD=AB=, 在RtABD中,由勾股定理得,BD=3, BC=2BD=6, ABC的周长为6+2+2=6+4. 1 2 3 22 -AB AD 333 6.(20
20、20上海黄浦一模,13)如果等腰ABC中,AB=AC=3,cosB=,那么cosA= . 1 3 答案答案 7 9 解析解析 过点A作ADBC,垂足为D,过点C作CEAB,垂足为E, 在RtADB中,cosB=, BD=AB=1. AB=AC,ADBC,BD=DC, BC=2,AD=2. AB CE=BC AD, CE=, AE=,cosBAC=. BD AB 1 3 1 3 22 -AB BD 22 3 -12 1 2 1 2 BC AD AB 22 2 3 4 2 3 22 -AC CE 7 3 AE AC 7 3 3 7 9 7.(2019四川成都双流一模,12)如图,在ABC中,AB=
展开阅读全文