电磁场与电磁波第12讲焦耳定律边界条件电阻计算及第5章复习-课件.ppt(33页)
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《电磁场与电磁波第12讲焦耳定律边界条件电阻计算及第5章复习-课件.ppt(33页)》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电磁场 电磁波 12 焦耳 定律 边界条件 电阻 计算 及第 复习 课件
- 资源描述:
-
1、Field and Wave Electromagnetic电磁场与电磁波电磁场与电磁波2015.10.3121.Current Density and Ohms Law SIJ dsA2 (/)JuA m2 (A/m)JE12lIVIRIsGReview33.Equation of Continuity and Kirchhoffs Current Law2.Electromotive Force and Kirchhoffs Voltage Law1121212221dd=d-VVViEl=El El Outside the sourceInside the source (V)jkkjk
2、R I3 (A/m)Jt 0jjI EConducting mediumPNEImpressed sourceEi0J0SJ dsSdQJ dsdt 4We are now in a position to prove this statement and to calculate the time it takes to reach an equilibrium.tEJEJt E0twhere 0 is the initial charge density at t=0.The time constant is called the relaxation time(驰豫时间)驰豫时间).铜,
3、铜,1.521.5210-19SAn initial charge density 0 will decay to 1/e or 36.8%of its value in a time equal to0ttCee5For a homogeneous conducting medium0JWe know that a curl-free vector field can be expressed as the gradient of a scalar potential field.Let us writeJ Substitution of this equation into 0Jyield
4、s a Laplaces equation in ;that is206Two fields are found to be very similar in source-free region.Steady Electric Current Field)0(E d0lJl d0SJS0J0JElectrostatic Field)0(d0lEl d0SES0E0E The electric current density J corresponds to the electric field intensity E,and the electric current lines to the
5、electric field lines.In some cases,since the steady electric current field is easy to be constructed and measured,the electrostatic field can be investigated based on the steady electric current field with the same boundary conditions,and this method is called electrostatic simulation.7Capacitancess
6、LLD dsE dsQCVE dlE dl JEResistanceLLssE dlE dlVRIJ dsE dsCRCGBased on the equations for two fields,we can find the resistance and conductance between two electrodes as8In certain situations,electrostatic and steady-current problems are not exactly analogous,even when the geometrical configurations a
7、re the same.This is because current flow can be confined strictly within a conductor(which has a very large in comparison to that of the surrounding medium),whereas electric flux usually cannot be contained within a dielectric slab of finite dimensions.The range of the dielectric constant of availab
8、le materials is very limited,and the fluxfringing around conductor edges makes the computation of capacitance less accurate.9Main topic 恒定电流恒定电流3.电阻的计算电阻的计算1.功率耗散和焦耳定律功率耗散和焦耳定律2.电流密度的边界条件电流密度的边界条件101.功率耗散和焦耳定律功率耗散和焦耳定律 宏观上,导体中的电子受电场的影响,发生漂移运动;在微观上,宏观上,导体中的电子受电场的影响,发生漂移运动;在微观上,这些电子与晶格上的原子发生碰撞。因此,能量从电
9、场传到作热振动的这些电子与晶格上的原子发生碰撞。因此,能量从电场传到作热振动的原子上。将电荷移动了一段距离原子上。将电荷移动了一段距离 ,电场,电场E 作的功为作的功为q E ,则其所对则其所对应的功率为:应的功率为:00limlimttWqE dlPqE utt 其中其中 u 为漂移速度。传递到体积为漂移速度。传递到体积 dv 内所有电荷载体的总功率为内所有电荷载体的总功率为:3d or (W/m)iiiiiiiiiiPpEN qudvdPdPE JdvE JdvJN qu 11The total electric power converted into heat in volume V:
10、(W)VPE Jdv This is known as Joules law.The point function EJ is a power density under steady-current conditions.In a conductor of a constant cross section,we can written as2 WPI R122.电流密度的边界条件电流密度的边界条件When current obliquely crosses an interface between two media with different conductivities(1 2),th
11、e current density vector changes both in direction and in magnitude.A set of boundary conditions can be derived for J in a way similar to that used in Section 3-9 for obtaining the boundary conditions for D and E.The governing equations for steady current density J in the absence of non-conservative
12、 energy sources are0J0J Differential form0SJ ds0CJdlIntegral formGoverning Equations for Steady Current Density13E2E1 2 1at w hacdban2hS 2 1an2D1D2 s D0E0CE dl SD dsQ2121221212()0 or )or nttnsnnsaEEEEaDDDD(121t2t1t2t d d d d d0 d d()0bcdalabcdbdacEwEwEE 1212ElElElElElElElEwEw21 1212222121n2nd()(sSbo
13、ttomsidetopnntopbottomnsDdSD dSDdSSDdSDdSDaSDaSaDDSDDSS DS140J 0J 0SJds0CJdlJ2J1 2 1at w hacdban2hS2 1an2J1J2 s122120nJJa1122ttJJ12212 -0nnnJJaJJthe normal component of current density vector J being continuous.the ratio of the tangential components of current density vector J at two sides of an int
展开阅读全文