高中数学讲义微专题44《线性规划-非常规问题》讲义.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学讲义微专题44《线性规划-非常规问题》讲义.doc》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性规划非常规问题 高中数学 讲义 专题 44 线性规划 常规 问题 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、 微专题 44 线性规划中的非常规问题 一、基础知识: 在线性规划问题中,除了传统的已知可行域求目标函数最值之外,本身还会结合围成可 行域的图形特点,或是在条件中设置参数,与其它知识相结合,产生一些非常规的问题。在 处理这些问题时,第一依然要借助可行域及其图形;第二,要确定参数的作用,让含参数的 图形运动起来寻找规律;第三,要能将图形中的特点与关系翻译成代数的语言,并进行精确 计算。做到以上三点,便可大大增强解决此类问题的概率。 二、典型例题: 例 1:不等式组 0 01 4 x yk ykxk 所表示的平面区域为D,若D的面积为S,则 1 kS k 的 最小值为_ 思路:先作出平面区域。直线
2、 44ykxkkx ,可判断出过定点4,0, 通过作图可得平面区域D为直角三角形。所以三角形 面积 1 448 2 Skk。从而 2 811 81812 1111 kSk kk kkkk ,因为 1 12 1 k k ,所以32S 答案:32 例 2:关于, x y的不等式组0 yxa ba yxb 所确定的区域面积为2,则2ba的最 小值为( ) A. 3 B. 2 3 C. 2 D. 1 思路:要求出2ba的最值,则需要, a b的关系,所以要借助不等式组的面积,先作出不等 式的表示区域,从斜率可判断出该区域为一个矩形,可得长为 2 ab ,宽为 2 ba ,所以 22 2 2 ba S
3、,即 22 4ba,作出双曲线,通过平移 2zba可得直线与 22 4ba相切时,2ba取得最小 值。即: 22 22 4 32160 2 ba aazz zba 2 4 4480z 解得2 3z ,所以2zba的最小 值为2 3 答案:B 例 3: 若不等式组 0 0 24 x y xys xy 表示的平面区域是一个三角形, 则实数s的取值范围是 ( ) A. 02s或4s B. 02s C. 4s D. 2s 或4s 思路:本题约束条件含参,所以先从常系数不等式入手作图,直线xys为一组平行线, 在平移的过程中观察能否构成一个三角形。 一方面, 0 0 24 x y xy 本身就构成一个三
4、角形。所以当4s 时,不等式组的区域与 0 0 24 x y xy 区域相同,从而 符合题意。继续将直线xys向下平移。可得 24s时,不等式组的区域为一个四边形。当 02s时,xys从 0 0 24 x y xy 的区域中切 割出来了一个三角形。 所以符合题意。 而0s 时, 不等式组无公共区域。 综上所述,02s 或4s 答案:A 例 4:已知平面区域 0 0 240 x y xy 恰好被面积最小的圆 22 2 :Cxaybr及其内 部所覆盖,则圆C的方程为_ 思路:作图可得可行域为直角三角形,所以覆盖三角形最小的圆即为该三角形的外接圆。 4,0 ,0,2AB ,所以外接圆圆心为AB中点2
5、,1C,半径为 1 5 2 rAB,所以圆方 程为 22 215xy 答案: 22 215xy 例 5:过平面区域 20 20 20 xy y xy 内一点P作圆 22 :1O xy的两条切线,切点分别为,A B, 记APB,则当最小时cos的值为( ) A. 95 10 B. 19 20 C. 9 10 D. 1 2 思路:通过作图可知PAO与PBO关于OP对称,从而2 APB ,从而问题转化为寻 找APB的 最 小 值 。 可 利 用 三 角 函 数 , sin OA APB OP ,且1OA ,所以OP越大,则 sinAPB越小,从而APB越小。将问题转化为在平 面区域中寻找距离0,0O
展开阅读全文