高中数学讲义微专题14《函数的切线问题》讲义.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学讲义微专题14《函数的切线问题》讲义.doc》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数的切线问题 高中数学 讲义 专题 14 函数 切线 问题 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、 微专题 14 函数的切线问题 一、基础知识: (一)与切线相关的定义 1、切线的定义:在曲线的某点 A 附近取点 B,并使 B 沿曲线不断接近 A。这样直线 AB 的极限 位置就是曲线在点 A 的切线。 (1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面 也可理解为一个动态的过程,让切点 A 附近的点向A不断接近,当与A距离非常小时,观察 直线AB是否稳定在一个位置上 (2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。例如函数 3 yx在 1, 1 处的切线,与曲线有两个公共点。 (3) 在定义中, 点B不断接近A包含两个方向,A点右边的点向左接
2、近, 左边的点向右接近, 只有无论从哪个方向接近,直线AB的极限位置唯一时,这个极限位置才能够成为在点A处 的切线。对于一个函数,并不能保证在每一个点处均有切线。例如yx在0,0处,通过观 察图像可知,当0 x 左边的点向其无限接近时,割线的极限位置为yx ,而当0 x 右边 的点向其无限接近时,割线的极限位置为yx,两个不同的方向极限位置不相同,故yx 在0,0处不含切线 (4)由于点B沿函数曲线不断向A接近,所以若 f x在A处有切线,那么必须在A点及其 附近有定义(包括左边与右边) 2、切线与导数:设函数 yf x上点 00 ,A xfx f x在A附近有定义且附近的点 00 ,B xx
3、 fxx ,则割线AB斜率为: 0000 00 AB f xxf xf xxf x k xxxx 当B无限接近A时,即x接近于零,直线AB到达极限位置时的斜率表示为: 00 0 lim x f xxf x k x , 即切线斜率,由导数定义可知: 00 0 0 lim x f xxf x kfx x 。故 0 fx为 f x 在 00 ,A xf x处切线的斜率。这是导数的几何意义。 3、从导数的几何意义中可通过数形结合解释几类不含导数的点: (1)函数的边界点:此类点左侧(或右侧)的点不在定义域中,从而某一侧不含割线,也就 无从谈起极限位置。故切线不存在,导数不存在;与此类似还有分段函数如果
4、不连续,则断 开处的边界值也不存在导数 (2)已知点与左右附近点的割线极限位置不相同,则不存在切线,故不存在导数。例如前面 例子yx在0,0处不存在导数。此类情况多出现在单调区间变化的分界处,判断时只需选 点向已知点左右靠近,观察极限位置是否相同即可 (3)若在已知点处存在切线,但切线垂直x轴,则其斜率不存在,在该点处导数也不存在。 例如: 3 yx在0,0处不可导 综上所述: (1)-(3)所谈的点均不存在导数,而(1) (2)所谈的点不存在切线, (3)中的 点存在切线,但没有导数。由此可见:某点有导数则必有切线,有切线则未必有导数 。 (二)方法与技巧: 1、 求切线方程的方法: 一点一
5、方向可确定一条直线, 在求切线时可考虑先求出切线的斜率 (切 点导数)与切点,在利用点斜式写出直线方程 2、若函数的导函数可求,则求切线方程的核心要素为切点A的横坐标 0 x,因为 0 x可“一点 两代” ,代入到原函数,即可得到切点的纵坐标 0 f x,代入到导函数中可得到切线的斜率 0 fxk,从而一点一斜率,切线即可求。所以在解切线问题时一定要盯住切点横坐标,千 方百计的把它求解出来。 3、求切线的问题主要分为两大类,一类是切点已知,那么只需将切点横坐标代入到原函数与 导函数中求出切点与斜率即可,另一类是切点未知,那么先要设出切点坐标 00 ,x y,再考虑 利用条件解出核心要素 0 x
6、,进而转化成第一类问题 4、 在解析几何中也学习了求切线的方法, 即先设出切线方程, 再与二次方程联立利用0 求 出参数值进而解出切线方程。解析几何中的曲线与函数同在坐标系下,所以两个方法可以互 通。若某函数的图像为圆锥曲线,二次曲线的一部分,则在求切线时可用解析的方法求解, 例如: 2 1yx(图像为圆的一部分)在 13 , 22 处的切线方程,则可考虑利用圆的切线 的求法进行解决。若圆锥曲线可用函数解析式表示,像焦点在y轴的抛物线,可看作y关于x 的函数,则在求切线时可利用导数进行快速求解(此方法也为解析几何中处理焦点在y轴的 抛物线切线问题的重要方法) 5、在处理切线问题时要注意审清所给
7、已知点是否为切点。 “在某点处的切线”意味着该点即 为切点,而“过某点的切线”则意味着该点有可能是切点,有可能不是切点。如果该点恰好 在曲线上那就需要进行分类讨论了。 二、典型例题 例 1:求函数 32 x f xex在1x 处的切线方程 思路:本题切点已知,代入原函数求得函数值,代入导函数中求得切线斜率,进而利用点斜 式求出切线方程 解: 1fe 切点坐标为1,e 33231 xxx fxexexe 14fe 切线方程为:4143yee xyexe 小炼有话说:切点已知时求切线方程是切线问题中较简单的一类问题,体会切点分别代入到 函数与导函数中所起到的作用,体会切点横坐标在切线问题中的关键作
8、用 例 2:已知函数 ln2f xxx,则: (1)在曲线 f x上是否存在一点,在该点处的切线与直线420 xy平行 (2)在曲线 f x上是否存在一点,在该点处的切线与直线30 xy垂直 解: (1)思路:切点未知,考虑设切点坐标为 00 ,x y,再利用平行条件求出 0 x,进而求出 切线方程 设切点坐标为 00 ,x y 0 0 1 2fx x 由切线与420 xy平行可得: 00 0 11 24 2 fxx x 0 11 ln1 22 yf 切线方程为: 1 1ln244ln21 2 yxyx (2)思路:与(1)类似,切点未知,考虑设切点坐标为 00 ,x y,有垂直关系可得切线斜
9、率 与已知直线斜率互为负倒数,列出方程求出 0 x,进而求出切线方程 设切点坐标 00 ,x y 0 0 1 2fx x ,直线30 xy的斜率为1 00 0 11 21 3 fxx x 而 0 0,x 0 1 3 x 不在定义域中,舍去 不存在一点,使得该点处的切线与直线30 xy垂直 小炼有话说: (1)求切线的关键要素为切点,进而若切点已知便直接使用,切线未知则需先 设再求。两直线平行与垂直关系与直线的斜率密切相关,进而成为解出切点横坐标的关键条 件 (2)在考虑函数问题时首先要找到函数的定义域。在解出自变量的值或范围时也要验证其是 否在定义域内 例 3:函数 2 lnf xaxbx上一
10、点 2,2Pf处的切线方程为32ln22yx ,求 , a b的值 思路: 本题中求, a b的值, 考虑寻找两个等量条件进行求解,P在直线32ln22yx 上, 3 22ln222ln24y ,即 2 =2ln24f,得到, a b的一个等量关系,在从切 线斜率中得到2x 的导数值,进而得到, a b的另一个等量关系,从而求出, a b 解:P在32ln22yx 上, 23 22ln222ln24f 2ln242ln24fab 又因为P处的切线斜率为3 2 a fxbx x 243 2 a fb ln242ln24 2 143 2 ab a a bb 小炼有话说: (1)本题中切线体现了两个
11、作用:切点在切线上,进而可间接求出函数值; 切线的斜率即为切点导数值 (2)一般来说,在求未知量的值题目中,未知量的个数与所用条件的个数相等。在本题中确 定, a b两个未知量,从而想到寻找两个条件来解决问题。 例 4:曲线 x ye在点 2 2,e处的切线与坐标轴所围三角形的面积为( ) A. 2 e B. 2 2e C. 2 4e D. 2 2 e 思路: x fxe 由图像可得三角形的面积可用切线的横纵截距计算,进而先利用求出切线 方程 2 2fe所以切线方程为: 22 2yeex即 22 0e xye, 与两坐标轴的交点坐标为 2 1,00, e 2 2 1 1 22 e Se 答案:
12、D 小炼有话说:在平面直角坐标系中,我们研究的问题不仅有函数,还有解析几何。所以在求 面积等问题时也会用到解析几何的一些理念与方法。例如求三角形面积要寻底找高,而选择 底和高以计算简便为原则,优先使用点的坐标表示。在本题中选择横纵截距来刻画三角形的 两条直角边有助于简化计算。 例 5:一点P在曲线 3 2 3 yxx上移动,设点P处切线的倾斜角为,则角的取值范 围是( ) A.0, 2 B. 3 0, 24 C. 3 , 4 D. 3 , 24 思路:倾斜角的正切值即为切线的斜率,进而与导数联系起来。 2 31yx,对于曲线上任 意一点P,斜率的范围即为导函数的值域: 2 =311,yx ,所
13、以倾斜角的范围是 3 0, 24 答案:B 小炼有话说: (1)对于切线而言,其倾斜角,斜率,切点处的导数联系紧密:倾斜角的正切 值为斜率,斜率即为切点的导数值。 (2)斜率范围到倾斜角范围的转化要注意一下两点: 斜率化倾斜角时尽量用图像进行辅 助,观察斜率变化时,倾斜角的变化程度。 直线倾斜角的范围为0, 例 6:求过点2,8A,且与曲线 3 f xx相切的直线方程 思路:2,8A满足 f x,但题目并没有说明A是否为切点,所以要分A是否为切点进行分 类讨论。当A是切点时,易于求出切线方程,当A不是切点时,切点未知,从而先设再求, 设切点 00 ,x y,切线斜率为k,三个未知量需用三个条件
14、求解: 00 yf x, 0 kfx, 0 0 A A yy k xx 解: (1)当2,8A为切点时 2 3fxx 212f 切线方程为:81221216yxyx (2)当2,8A不是切点时,设切点 00 ,P x y 0 2x ,切线斜率为k 3 00 2 0 0 0 3 8 2 yx kx y k x ,消去 0 , k y可得: 3 2 0 0 0 8 3 2 x x x 而 32 0000 8224xxxx 0 2x 方程等价于: 222 00000 32420 xxxxx 解得: 0 2x (舍) , 0 1x 0 1,3yk 切线方程为13132yxyx 综上所述:切线方程为12
展开阅读全文