论正态分布的重要地位和应用2要点(DOC 18页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《论正态分布的重要地位和应用2要点(DOC 18页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 论正态分布的重要地位和应用2要点DOC 18页 正态分布 重要地位 应用 要点 DOC 18
- 资源描述:
-
1、 学校代码13651编 号0320150016本科毕业论文(设计)题目:论正态分布的重要地位和应用学 部:工学部学生姓名:王梅影学 号:2011070102021年 级:2011级专业班级:信息与计算科学指导教师: 赵姣珍 职称:讲师完成时间:2015/5/15中国贵州贵阳 贵州民族大学人文科技学院毕业论文(设计)成果声明 本人的毕业论文是在贵州民族大学人文科技学院赵姣珍老师的指导下独立撰写并完成的。毕业论文没有剽窃、抄袭、造假等违反学术道德、学术规范和侵权行为,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。对本文的研究做出重要贡献的个人和集体,均已在文
2、中以明确方式标明。本声明的法律结果由本人承担。 论文作者签名: 日期 年 月 日 贵州民族大学人文科技学院毕业论文(设计)目 录摘要1Abstract21绪论31.1研究背景31.2研究目的31.3研究现状41.4研究意义42 正态分布相关知识介绍52.1正态分布的概念52.2正态分布曲线特性52.3 标准正态分布83 正态分布的应用93.1 正态分布应用实例93.1.1 正态分布在生产中的应用93.1.2正态分布在日常生活中的应用103.1.3正态分布在销售分类中的应用113.1.4正态分布在工作学习中的应用123.1.5 正态分布在仪器测量中的应用123.2 正态分布的应用价值13总 结1
3、5参考文献16致 谢17 贵州民族大学人文科技学院毕业论文(设计)摘 要:正态分布是一种最常见的连续型随机变量的分布,是概率论中最重要的一中分布.在理论上和实际生活中正态分布具有重要地位,数理统计中的正态分布是很多重要问题的解决的基础,在理论研究中占有举足轻重的地位.本文首先针对正态分布这一理论研究与实际应用都占有重要地位的概率分布展开分析研究,从其基本概念出发,然后分析其特性以及各种应用价值,最后通过一系列研究给出正态分布具有重大作用的理论依据.关键词:正态分布 标准正态分布 方差 标准差Abstract: The normal distributionis the most common
4、distribution of acontinuous random variablewhether in theoretical research orpractical application. It occupiespride of placein that ithas awideapplication in the field . It cansolve many important problemsin the mathematical statisticswhich based on the normal distribution forthe normal distributio
5、n,soin theory to studythe normal distribution.This paper analysis the normal probability distributionaccording to thetheoretical research and practical application which occupy an important position in many science fields from the basicconcept,analysis andapplication value of itscharacteristics.The
6、theoretical basisis giventhrough a series ofstudies onthe normal distributionhas a significant role.Key words: The normal distribution Standard distribution Thecurve Standard deviation1绪论 1.1研究背景 随机现象存在于自然界和人类生活中的每一个角落,因此概率论在现实中的应用非常之广泛,而在概率论中的最主要的一个分支就是正态分布(Normal distribution),正态分布不仅在金融、精算以及保险等新型领
7、域中占有重要地位,而且对于医学、物理学、生物学等领域的影响也是不可忽略的.正态分布又被称为高斯分布,正态分布在统计学科、数学领域、自然生物领域都有着极其关键作用的概率分布.我们假设连续性随机变量X服从一个数学期望为、方差为2的正态分布,记为N(,2).决定了正态分布的期望值,其标准差决定了分布的幅度.由于正态分布的曲线也称为钟形曲线.在日常的学习研究之中,标准正态分布,它是 = 0, = 1的正态分布. 正态分布是我们生活中不可或缺的一部分,如果能够充分理解它,它能够带来的利益也是无法估量的.作为新时代的大学生,很好地掌握正态分布的原理并能够将其运用于社会生活中,是我们的一个任务,为此对正态分
8、布进行系统的学习和研究. 1.2研究目的正态分布是统计方法的理论中最为基础的部分,是不以人类的意志而转移的统计规律,具有统一的函数表达式.正态分布在实际生活中,存在着很多服从正态分布的例子,.比如测量产品的误差、产品质量的测量,农业作物的产量等.服从正态分布的随机变量应用非常之广.没有任何一种随机变量可以相比较.所以,我们需要对正态分布进行深入广泛的研究.为了能够更好地掌握正态分布,让其能够更好地被应用生活之中,为人类谋取更多的福利,对其在理论和应用方面进行了系统的研究以求进一步的了解正态分布的奥秘. 1.3研究现状正态分布概念首先由数学家De Moivre发现引入并提出,然后直到1809年,
9、德国数学家Gauss将其应用于自然科学的广泛研究,因此又被称作高斯分布.正态分布最早是通过进行误差分析而发现的.进入近代统计时代,拉普拉斯首次提出了概率论的古典定义,把概率论的理论作为基本理论,再次进行了中心极限定理的证明,进一步完善了观测误差论,在前人的基础上进行了一次伟大的改革.19世纪50年代凯特莱运用大量的概率论原理对自然和社会现象进行测量,然后统计出大数据,这些数据反映出来的规律可以体现事物的变化,甚至可以预测未来事件发生的可能性.随后凯特莱有对正态曲线进行了拓展,高尔顿对正态分布进行了创新.19世纪起,以马尔可夫和切比雪夫为代表的数学家通过引入随机变量的盖帘,建立了随机变量的独立性
10、和非独立性的标准,提出了收敛到正态分布的充要条件.到达20世纪,通过哥赛特,费歇尔等人的努力,小样本理论诞生了,正态分布的地位得到了进一步的巩固.20世纪后,统计学家在实验中获得的数据越来越精确,由统计分析得到的结论得到了普遍认可. 1.4研究意义正态分布具有极其广泛的实际应用背景,在人们的各种生产生活以及科学实验当中,有大量的随机变量的概率分布特性都可以近似的用正态分布来描述.当我们描述某一件事或者某一个要达到的目标时,大部分的个体所发挥出来的特性都能够很好地服从正态分布.这也就是说,对于大量的个体的特性统计分析,可以尝试利用正态分布来估量.除此之外,正态分布也可应用到解决现实生活问题,产品
11、质量管理、人体生理的特征及学生的综合素质等多领域都可以用正态分布进行研究.因此,正态分布作为一种最常见的连续型随机变量的分布,不仅在概率论和数理统计的理论研究中有重要地位,而且在实际应用上也有着重要研究价值.充分研究正态分布在理论和应用中的重要定位,可以让我们充分学习到正态分布的理论知识,站在前人的肩膀上获得最好的研究成果.有利于在今后的研究中少走弯路,为今后研究打好基石.2 正态分布相关知识介绍 2.1正态分布的概念正态分布又被称作高斯(Gauss)分布或常态分布.正态分布曲线的两边低,中央是高峰,逐渐下降至两侧,左右呈现对称的,曲线不与横轴相交.设连续型随机变量的密度函数为: (2.1)(
12、其中是常数,且 ,为所研究的正太总体平均值,为标准差,为随机抽取得正态分布中的样本值).则称随机变量服从参数为的正态分布,记作,正态分布密度函数的图形如下图所示,这条曲线应称作“正态分布曲线”. 图2-1 正态密度曲线分布图 2.2正态分布曲线特性对上式(2.1)进行一定的数学计算处理:对式(2.1)求导,可得: (2.2)令,则有,即当时, 有极大值对式(2.2)求导有: (2.3)令,则有 ,即曲线在:可以看到拐点,而且有两个.表2-1 正态曲线的特性表0-0-0 曲线凹拐点凸极大值凸拐点凹对正态分布整体特性做了一定的介绍之后,下面对参数当和的意义进行阐释,当它们确定后,正态曲线就几乎能够
展开阅读全文