书签 分享 收藏 举报 版权申诉 / 27
上传文档赚钱

类型(高考冲刺)名师讲解-《高中数学》圆锥曲线与方程总结.ppt

  • 上传人(卖家):课件网
  • 文档编号:7584978
  • 上传时间:2024-03-31
  • 格式:PPT
  • 页数:27
  • 大小:807.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(高考冲刺)名师讲解-《高中数学》圆锥曲线与方程总结.ppt》由用户(课件网)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高考冲刺 高中数学 高考 冲刺 名师 讲解 圆锥曲线 方程 总结 下载 _三轮冲刺_高考专区_数学_高中
    资源描述:

    1、【高考冲刺】名师讲解全国特级教师 江新欢 博士教授高中数学高中数学课题:课题:圆锥曲线与方程总结圆锥曲线与方程总结专题探究精讲专题探究精讲本本章章优优化化总总结结知识体系网络知识体系网络圆锥曲线与方程总结圆锥曲线与方程总结知识体系网络知识体系网络专题探究精讲专题探究精讲圆锥曲线的定义圆锥曲线的定义题型特点:对圆锥曲线定义的考查多以选择题和题型特点:对圆锥曲线定义的考查多以选择题和填空题形式出现,一般难度相对较小,若想不到填空题形式出现,一般难度相对较小,若想不到定义的应用,计算量将会加大解题时应注意应定义的应用,计算量将会加大解题时应注意应用用知识方法:知识方法:(1)平面内满足平面内满足|P

    2、F1|PF2|2a(2a|F1F2|)的点的点P的轨迹叫做椭圆,定义可实现椭圆的轨迹叫做椭圆,定义可实现椭圆上的点到两焦点的距离的相互转化上的点到两焦点的距离的相互转化(2)平面内满足平面内满足|PF1|PF2|2a(2a|F1F2|)的点的点P的轨迹叫做双曲线,的轨迹叫做双曲线,|PF1|PF2|2a(2a|F1F2|)表示焦点表示焦点F2对应的一支,定义可实现双曲线上的对应的一支,定义可实现双曲线上的点到两焦点的距离的相互转化点到两焦点的距离的相互转化(3)平面内与一个定点平面内与一个定点F和一条定直线和一条定直线l(不经过点不经过点F)距离相等的点的轨迹叫做抛物线,定义可实现抛距离相等的

    3、点的轨迹叫做抛物线,定义可实现抛物线上的点到焦点与到准线距离的相互转化物线上的点到焦点与到准线距离的相互转化.【答案】【答案】B圆锥曲线的性质圆锥曲线的性质题型特点:有关圆锥曲线的焦点、离心率等问题型特点:有关圆锥曲线的焦点、离心率等问题是考试中常见的问题,只要掌握基本公式和题是考试中常见的问题,只要掌握基本公式和概念,并且充分理解题意,大都可以顺利求解概念,并且充分理解题意,大都可以顺利求解.知识方法:圆锥曲线的简单几何性质知识方法:圆锥曲线的简单几何性质(1)圆锥曲线的范围往往作为解题的隐含条件圆锥曲线的范围往往作为解题的隐含条件.(2)椭圆、双曲线有两条对称轴和一个对称中心椭圆、双曲线有

    4、两条对称轴和一个对称中心,抛物线只有一条对称轴抛物线只有一条对称轴(3)椭圆有四个顶点,对曲线有两个顶点,抛物椭圆有四个顶点,对曲线有两个顶点,抛物线只有一个顶点线只有一个顶点(4)双曲线焦点位置不同,渐近线方程不同双曲线焦点位置不同,渐近线方程不同(5)圆锥曲线中基本量圆锥曲线中基本量a,b,c,e,p的几何意义的几何意义及相互转化及相互转化【答案】【答案】D直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系题型特点:近几年来直线与圆锥曲线的位置关题型特点:近几年来直线与圆锥曲线的位置关系在高考中占据高考解答题压轴题的位置,且系在高考中占据高考解答题压轴题的位置,且选择、填空也有涉及,有关直线

    5、与圆锥曲线的选择、填空也有涉及,有关直线与圆锥曲线的位置关系的题目可能会涉及线段中点、弦长等位置关系的题目可能会涉及线段中点、弦长等.知识方法:与圆锥曲线有关的最值问题大多是综知识方法:与圆锥曲线有关的最值问题大多是综合性、解法灵活、技巧性强、涉及代数、几何等合性、解法灵活、技巧性强、涉及代数、几何等知识的题目,常用的解决方法有两种,一是几何知识的题目,常用的解决方法有两种,一是几何法:若题目的条件和结论能明显体现几何特征及法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;二是代数法意义,则考虑利用图形性质来解决;二是代数法:若题目的条件和结论能体现一种明确的函数,则若

    6、题目的条件和结论能体现一种明确的函数,则可首先列出函数关系式,再求这个函数的最值可首先列出函数关系式,再求这个函数的最值圆锥曲线中的定点、定值、最值问题圆锥曲线中的定点、定值、最值问题题型特点:圆锥曲线中的最值、取值范围问题既题型特点:圆锥曲线中的最值、取值范围问题既是高考的热点问题,也是难点问题,解决这类问是高考的热点问题,也是难点问题,解决这类问题的基本思想是建立目标函数和不等关系,根据题的基本思想是建立目标函数和不等关系,根据目标函数和不等式求最值、取值范围,因此这类目标函数和不等式求最值、取值范围,因此这类问题的难点就是如何建立目标函数和不等关系问题的难点就是如何建立目标函数和不等关系

    7、知识方法:圆锥曲线中的定点、定值问题往往与知识方法:圆锥曲线中的定点、定值问题往往与圆锥曲线中的圆锥曲线中的“常数常数”有关,如椭圆的长、短轴有关,如椭圆的长、短轴,双曲线的虚、实轴;抛物线的焦点等可通过直双曲线的虚、实轴;抛物线的焦点等可通过直接计算而得到另外还可用接计算而得到另外还可用“特例法特例法”和和“相关相关曲线系法曲线系法”圆锥曲线中的最值问题,通常有两类:一类是有圆锥曲线中的最值问题,通常有两类:一类是有关长度、面积等的最值问题;一类是圆锥曲线中关长度、面积等的最值问题;一类是圆锥曲线中有关几何元素的最值问题这两类问题的解决往有关几何元素的最值问题这两类问题的解决往往要通过回归定

    8、义,结合几何知识,建立目标函往要通过回归定义,结合几何知识,建立目标函数,利用函数的性质或不等式知识,三角函数有数,利用函数的性质或不等式知识,三角函数有界性,以及数形结合、设参、转化代换等途径来界性,以及数形结合、设参、转化代换等途径来解决特别注意函数思想,观察分析图形特征,解决特别注意函数思想,观察分析图形特征,利用数形结合等思想方法利用数形结合等思想方法 如图所示,过抛物线如图所示,过抛物线y22px的顶点的顶点O作两作两条互相垂直的弦交抛物线于条互相垂直的弦交抛物线于A、B两点两点求求AOB面积的最小值面积的最小值曲线的方程曲线的方程题型特点:求动点轨迹方程是常见题型,高考中题型特点:

    9、求动点轨迹方程是常见题型,高考中多以解答题的某一问出现,其难度为中等,大多多以解答题的某一问出现,其难度为中等,大多试题的轨迹方程求不出来或出错,将无法解决其试题的轨迹方程求不出来或出错,将无法解决其他问题他问题知识方法:求曲线方程是解析几何的基本问题之知识方法:求曲线方程是解析几何的基本问题之一,其求解的基本方法有:一,其求解的基本方法有:(1)直接法:建立适当的坐标系,设动点为直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求根据几何条件直接寻求x、y之间的关系式之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲代入法:利用所求曲线上的动点与某一已知曲线上的动点的

    10、关系,把所求动点转换为已知动点线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标具体地说,就是用所求动点的坐标x、y来表示已来表示已知动点的坐标并代入已知动点满足的曲线的方程知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标由此即可求得所求动点坐标x、y之间的关系式之间的关系式(3)定义法定义法:如果所给几何条件正好符合圆、椭圆、如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程些已知曲线的方程写出动点的轨迹方程 设圆设圆(x1)2y21的圆心为的圆心为C,过原点作,过原点作圆的弦圆的弦OA,求,求OA中点中点B的轨迹方程的轨迹方程

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(高考冲刺)名师讲解-《高中数学》圆锥曲线与方程总结.ppt
    链接地址:https://www.163wenku.com/p-7584978.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库