书签 分享 收藏 举报 版权申诉 / 7
上传文档赚钱

类型上海市金山区2018届高三数学上学期期末质量监控试题(word版,有答案).doc

  • 上传人(卖家):阿汤哥
  • 文档编号:75554
  • 上传时间:2018-10-20
  • 格式:DOC
  • 页数:7
  • 大小:189KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《上海市金山区2018届高三数学上学期期末质量监控试题(word版,有答案).doc》由用户(阿汤哥)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    上海市 金山区 2018 届高三 数学 上学 期期 质量 监控 试题 word 答案 下载 _考试试卷_数学_高中
    资源描述:

    1、 - 1 - 上海市金山区 2018届高三数学上学期期末质量监控试题 (满分: 150分,完卷时间: 120分钟 ) (答题请写在答题纸上) 一、填空题(本大题共有 12 题,满分 54分 , 第 1 6题每题 4分,第 7 12题每题 5分 ) 考生应在答题纸相应编号的空格内直接填写结果 1若全集 U=R,集合 A=x|x 0或 x 2,则 UA= 2不等式 01?xx 的解为 3方程组? ? ? 532 123 yx yx的增广矩阵是 4 若复数 z=2 i( i为虚数单位),则 zzz ? = 5 已知 F1、 F2是椭圆 1925 22 ? yx 的两个焦点, P 是椭圆上 的一个动

    2、点,则 |PF1| PF2|的最大值是 _ 6 已知 x, y满足?20301xyxyx ,则 目标函数 k=2x+y的最大值为 7 从一副混合后的扑克牌( 52张)中随机抽取 1张,事件 A为 “ 抽得红桃 K” ,事件 B为 “ 抽得为黑桃 ” ,则概率 P(A B)= (结果用最简分数表示) 8 已知 点 A(2, 3)、点 B( 2, 3 ),直线 l过点 P( 1, 0), 若直线 l与线段 AB 相交,则直线 l的倾斜角 的取值范围是 9. 数列 an的通项公 式是 an=2n 1(n N*),数列 bn的通项公式是 bn=3n(n N*),令集合 A=a1,a2,?, an,?

    3、, B=b1, b2,?, bn,? , n N*将集合 A B中的 所有 元素按从小到大的顺序排列 , 构成的数列记为 cn则数列 cn的前 28项的和 S28= 10 向量 i 、 j 是 平面直角坐标系 x轴、 y轴的 基本 单位向量,且 |a i |+|a 2j |= 5 ,则 |2| ia? 的取值范围为 11某地区原有森林木材存有量为 a,且每年增长率为 25%,因生产建设的需要,每年年末要砍伐的木材 量为 101 a,设 an为第 n年末后该地区森林木材存量,则 an= - 2 - 12 关于函数 ()1xfx x? ?,给出以下四个命题: (1)当 x0时, y=f(x)单调递

    4、减且没有最值;(2)方程 f(x)=kx+b(k 0)一定有 实数 解; (3)如果方程 f(x)=m(m为常数 )有解,则解的个数一定是 偶 数; (4) y=f(x)是偶函数且有最小值其中假命题的序号是 二、选择题(本大题共 4小题, 满分 20分, 每小题 5分) 每题有且只有一个正确选项考生应在答题纸的相应位置,将代表正确选项的小方格涂黑 13若非空集合 A、 B、 C满足 A B=C,且 B不是 A的子集,则 ( ) (A) “ x C”是“ x A”的 充分 条件但不是 必要条件 (B) “ x C”是“ x A”的 必要 条件但不是 充分条件 (C) “ x C”是“ x A”的

    5、 充要条件 (D) “ x C” 既不 是 “ x A”的 充分 条件也 不 是 “ x A”的 必要条件 14 将 如 图所示的一个 Rt ABC( C=90 )绕斜边 AB 旋转一周,所得到的几何体的主视图是下面四个图形中的 ( ) 15二项式 ( 3 i x)10(i 为虚数单位 )的展开式中第 8项是 ( ) (A) 135x7 (B)135x7 (C)360 3 i x7 (D) 360 3 i x7 16给出 下列 四个 命题 : (1)函数 y=arccosx ( 1 x 1)的反函数为 y=cosx(x R); (2)函数 12 ? mmxy (m N)为奇函数 ; (3)参数

    6、方程?2221211ttyttx(t R)所表示的曲线是圆; (4)函数 f(x)=sin2x 21)32( ?x ,当 x2017时, f(x)21 恒成立 其中真命题 的 个数为 ( ) (A) 4个 (B) 3个 (C) 2个 (D) 1个 第 14 题图 (A) (B) (C) (D) . C B A - 3 - 三、 解答题(本大题共有 5题,满 分 76分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 17 (本题满分 14分,第 1小题满分 7分,第 2小题满分 7分 ) 如图,已知正方体 ABCD A1B1C1D1的 棱长为 2, E, F分别是 BB1、 CD的

    7、中点 (1) 求三棱锥 F AA1E的体积; (2) 求异面直线 EF与 AB所成角的大小 (结果用反三角函数值表示) 18 (本题满分 14分,第 1小题满分 6分,第 2小题满分 8分 ) 已知函数 f(x)= 3 sin2x+cos2x 1 (x (1) 写出函数 f(x)的最小正周期 以及 单调递增区 间; (2) 在 ABC中,角 A, B, C所对的边分别为 a, b, c,若 f(B)=0, 23?BCBA ,且 a+c=4,求 b的值 19 (本题满分 14分,第 1小题满分 6分,第 2小题满分 8分 ) 设 P(x, y)为 函数 f(x)= axx ?2 (x D, D为

    8、定义域 )图像上的 一个动 点 , O为坐标原点,|OP|为点 O与点 P两点间的距离 (1) 若 a=3, D=3, 4,求 |OP|的最大值与最小值; (2) 若 D=1, 2, 是否存在实数 a,使得 |OP|的最小值 不小于 2? 若存在,请求出 a的取值范围; 若 不存在,则说明理由 20 (本题满分 16分 , 第 1小题满分 4分,第 2小题满分 5分 , 第 3小题满分 7分 ) 给出定理: 在圆锥曲线中, AB 是抛物线 : y2=2px (p0)的一条弦, C是 AB的中点,过点 C且平行于 x轴的直线与抛物线的交点为 D,若 A、 B两点纵坐标 之 差 的绝对值 | BA

    9、 yy ? =a (a0), 则 ADB的面积 S ADB=pa163 试运用上述 定理 求解 以下各题 : (1) 若 p=2, AB 所在直线的方程为 y=2x 4, C 是 AB 的中点,过 C 且平行于 x 轴的直线与抛物线 的交点为 D,求 S ADB; - 4 - (2) 已知 AB 是抛物线 : y2=2px (p0)的一条弦, C是 AB的 中点,过 点 C 且平行于 x轴的直线与抛物线的交点为 D, E、 F分别为 AD和 BD 的中点,过 E、 F且 平行于 x 轴的直线与抛物线 : y2=2px (p0)分别交于点 M、 N,若 A、 B两点纵坐标 之 差 的绝对值 |

    10、BA yy ? =a (a0),求 S AMD和 S BND; (3) 请 你在上述问题的启发下,设计一种方法求抛物线 : y2=2px (p0)与弦 AB 围成的 “ 弓形 ” 的面积 ,并求出相应面积 21 (本题满分 18分,第 1小题满分 4分,第 2小题满分 6分,第 3小题满分 8分 ) 若数列 an中存在三项,按一定次序排列构成等比数列,则称 an为 “ 等比源数列 ” (1) 已知数列 an中, a1=2, an+1=2an 1求数列 an的通项公式; (2) 在 (1)的结论下,试判断数列 an是否为 “ 等比源数列 ” ,并证明你的结论; (3) 已知数列 an为等差数列,

    11、且 a10 , an n *),求证: an为 “ 等比源数列 ” 参考答案 (满分: 150分,完卷时间: 120分钟 ) 一、填空题(本大题共有 12题,满分 54分 , 第 1 6题每题 4分,第 7 12题每题 5分 ) 1 A=x|00)的一条弦, M是 AD的中点,且 A、 D 两点纵坐标之 差 为定值, |yA yD|=2a (a0), ? 6分 由已知的结论,得 S AMD= papa 168116)2( 33 ? , ? 8分 同理可得 S BND= papa 168116)2( 33 ? ;? 9分 (3) 将 (2)的结果看作是一次操作,操作继续下去, 取每段新弦的中点作

    12、平行于 x 轴的直线与抛物线得到交点,并与弦端点连接,计算得到新三角形面积。操作无限重复下去 第一次操作,增加的面积为 S AMD和 S BND= papa 164116 )21(2 33 ? , ? 10分 第二次操作,增加了 4 个三角形,面积共增加了 papa 1616116 )41(2 332 ? , ? 12分 第三次操作,增加了 8 个三角形,面积共增加了 papa 1664116 )81(2 333 ? , ? 14分 ? - 7 - 可得到一个公比为 14 的无穷等比数列 , 随着操作继续充分下去,这些三角形逐渐填满抛物线与弦 AB 围成的 “ 弓形 ” , ? 15 分 因此

    13、 “ 弓形面积 ” )41(16141116lim 13 ? ? nn paS pa123? ? 16 分 21解 (1) 由 an+1=2an 1,得 an+1 1=2(an 1),且 a1 1=1, 所以数列 an 1是首项为 1,公比为 2的等比数列, ? ? ?2 分 所以 an 1=2n 1, 所以,数列 an的通项公式为 a n=2n 1+1 ? ? ? 4分 (2)数列 an不是“等比源数列”,用反证法证明如下: 假设数列 an是“等比源数列”,则存在三项 am, an, ak (m n k)按一定次序排列构成等比数列, 因为 an=2n 1+1,所以 am an ak, ? ?

    14、 ? ? 7分 所以 an2=am ak,得 (2n 1+1)2=(2m 1+1)(2k 1+1),即 22n m 1+2n m+1 2k 1 2k m=1, 又 m n k, m, n, k N*, 所以 2n m 11 , n m+11 , k 11 , k m1 , 所以 22n m 1+2n m+1 2k 1 2k m为偶数 , 与 22n m 1+2n m+1 2k 1 2k m=1矛盾 , 所以, 数列 an中 不存在任何三项, 按一定次序排列构成等比数列 , 综上可得,数列 an不是“等比源数列”; ? ? ? ? 10分 (3)不妨设等差数列 an的公差 d 0, 当 d=0时

    15、,等差数列 an为非零常数数列, 数列 an为“等比源数列”; 当 d 0时,因为 an Z,则 d 1,且 d Z,所以 数列 an中必有一项 am 0,? 12分 为了使得 an为“等比源数列”, 只需要 an中存在第 n项,第 k项 (m n k),使得 an2=amak成立, 即 am+(n m)d2=amam+(k m)d, 即 (n m) 2am+(n m)d =am(k m)成立 ,? 15分 当 n=am+m, k=2am+amd+m时 , 上式成立 , 所以 an中存在 am, an, ak成等比数列 , 所以,数列 an为“等比源数列” ? ? ?1 8分 注意:第 (3)题批改时注意答案的验证

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:上海市金山区2018届高三数学上学期期末质量监控试题(word版,有答案).doc
    链接地址:https://www.163wenku.com/p-75554.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库