(数学)数学-高考知识点总结-41页.pdf
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(数学)数学-高考知识点总结-41页.pdf》由用户(汀枫)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 高考 知识点 总结 _41 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、 全国通用全国通用 高中数学高考知识点总结高中数学高考知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性” 。 如:集合, 、 、Ax yxBy yxCx y yxABC|lg|lg( , )|lg 中元素各 表示什么? 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集 的特殊情况。 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 如:集合,Ax xxBx ax| 2 2301 若,则实数 的值构成的集合为BAa (答:, ,) 10 1 3 3. 注意下列性质: ( )集合,的所有子集的个数是;12 12 aaa
2、n n ( )若,;2ABABAABB (3)德摩根定律: CCCCCC UUUUUU ABABABAB, 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于 的不等式的解集为,若且,求实数x ax xa MMMa 5 035 2 的取值范围。 (, , ,) 3 35 3 0 5 55 5 0 1 5 3 925 2 2 M a a M a a a 5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和( )( )“非”( ). 若为真,当且仅当 、 均为真pqpq 若为真,当且仅当 、 至少有一个为真pqpq 若为真,当且仅当 为假pp 6. 命题的四种形式及其相互关
3、系是什么? (互为逆否关系的命题是等价命题。 ) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7. 对映射的概念了解吗?映射 f:AB,是否注意到 A 中元素的任意性和 B 中与之对应 元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许 B 中有元素无原象。 ) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? 例:函数的定义域是y xx x 4 3 2 lg (答:,)022334 10. 如何求复合函数的定义域? 如:函数的定义域是,则函数的定f xabbaF(xf xfx( )( )() 0义域是_
4、。 (答:,)aa 11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 如:,求fxexf x x 1( ). 令,则txt10 xt 2 1 f tet t ( ) 2 12 1 f xexx x ( ) 2 12 10 12. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗? (反解 x;互换 x、y;注明定义域) 如:求函数的反函数f x xx xx ( ) 10 0 2 (答:)fx xx xx 1 11 0 ( ) 13. 反函数的性质有哪些? 互为反函数的图象关于直线 yx 对称; 保存了原来函数的单调性、奇函数性; 设的定义域为 ,值域为
5、,则yf(x)ACaAbCf(a) = bf 1 ( )ba ff afbaf fbf ab 111 ( )( )( )( ), 14. 如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性? (,则 (外层) (内层) yf uuxyfx( )( )( ) 当内、外层函数单调性相同时为增函数,否则为减函数。)fxfx( )( ) 如:求的单调区间yxxlog1 2 2 2 (设,由则uxxux 2 2002 且,如图:log1 2 2 11uux u O 1 2 x 当, 时,又,xuuy(log01 1 2 当,时,又,xuuy)log12 1 2 ) 15. 如
6、何利用导数判断函数的单调性? 在区间,内,若总有则为增函数。(在个别点上导数等于abf xf x( )( ) 0 零,不影响函数的单调性),反之也对,若呢?f x( ) 0 如:已知,函数在 ,上是单调增函数,则 的最大af xxaxa 01 3 ( ) 值是() A. 0B. 1C. 2D. 3 (令fxxax a x a ( ) 33 33 0 2 则或x a x a 33 由已知在 ,上为增函数,则,即f x a a( )1 3 13 a 的最大值为 3) 16. 函数 f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称) 若总成立为奇函数函数图象关于原点对称f
7、xf xf x()( )( ) 若总成立为偶函数函数图象关于 轴对称fxf xf xy()( )( ) 注意如下结论: (1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一 个偶函数与奇函数的乘积是奇函数。 ( )若是奇函数且定义域中有原点,则。2f(x)f(0)0 如:若 为奇函数,则实数f x aa a x x ( ) 22 21 (为奇函数,又,f xxRRf( )( )000 即 ,) aa a 22 21 01 0 0 又如:为定义在,上的奇函数,当,时,f xxf x x x ( )()()( ) 1101 2 41 求在, 上的解析式。f x( )11 (
展开阅读全文