书签 分享 收藏 举报 版权申诉 / 28
上传文档赚钱

类型高中数学人教A版选修1-2课件:1.1《回归分析》课时2 .ppt

  • 上传人(卖家):金钥匙文档
  • 文档编号:744922
  • 上传时间:2020-09-15
  • 格式:PPT
  • 页数:28
  • 大小:710.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高中数学人教A版选修1-2课件:1.1《回归分析》课时2 .ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    回归分析 高中数学人教A版选修1-2课件:1.1回归分析课时2 高中 学人 选修 课件 1.1 回归 分析 课时 下载 _人教A版_数学_高中
    资源描述:

    1、3.13.1 回归分析的基回归分析的基 本思想及其初步应用本思想及其初步应用 (第二课时)(第二课时) 1 1通过典型案例的探究通过典型案例的探究,进一步了解回归分析的基本思想进一步了解回归分析的基本思想、 方法及其初步应用方法及其初步应用 2 2让学生经历数据处理的过程让学生经历数据处理的过程,培养他们对数据的直观感培养他们对数据的直观感 觉觉,体会统计方法的特点体会统计方法的特点,认识统计方法的应用认识统计方法的应用,通过使用转化通过使用转化 后的数据后的数据,求相关指数求相关指数,运用相关指数进行数据分析运用相关指数进行数据分析、处理的方处理的方 法法 3 3从实际问题中发现已有知识的不

    2、足从实际问题中发现已有知识的不足,激发好奇心激发好奇心,求知求知 欲欲,通过寻求有效的数据处理方法通过寻求有效的数据处理方法,开拓学生的思路开拓学生的思路,培养学生培养学生 的探索精神和转化能力的探索精神和转化能力,通过案例的分析使学生了解回归分析在通过案例的分析使学生了解回归分析在 实际生活中的应用实际生活中的应用,增强数学取之生活增强数学取之生活,用于生活的意识用于生活的意识,提高提高 学习兴趣学习兴趣 本节课通过例题线性相关关系知识本节课通过例题线性相关关系知识,通过实际问通过实际问 题中发现已有知识的不足题中发现已有知识的不足,引导学生寻找解决非线性引导学生寻找解决非线性 回归问题思想

    3、与方法回归问题思想与方法,培养学生化归数学思想培养学生化归数学思想。通过通过 知识的整理知识的整理,通过例题讲解掌握解决非线性回归问题通过例题讲解掌握解决非线性回归问题。 本节内容学生内容不易掌握本节内容学生内容不易掌握,通过知识整理与比通过知识整理与比 较引导学生进行区分较引导学生进行区分、理解理解。通过对典型案例的探究通过对典型案例的探究, 练习进行巩固解决非线性回归基本思想方法及初步应练习进行巩固解决非线性回归基本思想方法及初步应 用用 建立回归模型的基本步骤建立回归模型的基本步骤 ( (1 1) )确定研究对象确定研究对象,明确哪个变量是解释变量明确哪个变量是解释变量,哪个变量哪个变量

    4、 是预报变量是预报变量 ( (2 2) )画出确定好的解释变量和预报变量的散点图画出确定好的解释变量和预报变量的散点图,观察它观察它 们之间的关系们之间的关系( (如是否存在线性关系等如是否存在线性关系等) ) ( (3 3) )由经验确定回归方程的类型由经验确定回归方程的类型( (如我们观察到数据呈线如我们观察到数据呈线 性关系性关系,则选用线性回归方程则选用线性回归方程) ) ( (4 4) )按一定规则按一定规则( (如最小二乘法如最小二乘法) )估计回归方程中的参数估计回归方程中的参数 ( (5 5) )得出结果后分析残差图是否有异常得出结果后分析残差图是否有异常( (如个别数据对应如

    5、个别数据对应 残差过大残差过大,或残差呈现不随机的规律性等或残差呈现不随机的规律性等) )若存在异若存在异 常常,则检查数据是否有误则检查数据是否有误,或模型是否合适等或模型是否合适等 (6)(6)参数参数R R2 2与相关系数与相关系数r r 提示提示: :它们都是刻画两个变量之间的的相关关系的它们都是刻画两个变量之间的的相关关系的, ,区区 别是别是R R2 2表示解释变量对预报变量变化的贡献率表示解释变量对预报变量变化的贡献率, ,其表其表 达式为达式为R R2 2=1=1- - ; ; 相关系数相关系数r r是检验两个变量相关性的强弱程度是检验两个变量相关性的强弱程度, , 其表达式为

    6、其表达式为 n 2 ii i 1 n 2 i i 1 yy yy $ nn iiii i 1i 1 nnnn 22 22 22 iiii i 1i 1i 1i 1 xx yyx ynx y r. xxyy(xnx )(yny ) (7 7)相关系数相关系数r r与与R R2 2 ( (1 1)R)R2 2是相关系数的平方是相关系数的平方, ,其变化范围为其变化范围为 0 0, ,1 1,而相关系而相关系 数的变化范围为数的变化范围为 - -1 1, ,1 1 . . ( (2 2) )相关系数可较好地反映变量的相关性及正相关或负相关系数可较好地反映变量的相关性及正相关或负 相关相关, ,而而R

    7、 R2 2反映了回归模型拟合数据的效果反映了回归模型拟合数据的效果. . ( (3 3) )当当|r|r|接近于接近于1 1时说明两变量的相关性较强时说明两变量的相关性较强, ,当当|r|r|接接 近于近于0 0时说明两变量的相关性较弱时说明两变量的相关性较弱, ,而当而当R R2 2接近于接近于1 1时时, ,说说 明线性回归方程的拟合效果较好明线性回归方程的拟合效果较好. . 31表 325115662421117/y 35322927252321C/ 0 个个产卵数产卵数 温度温度 例:一只红铃虫产卵数例:一只红铃虫产卵数y和温度和温度x有关,现收集到的一有关,现收集到的一 组数据如下表

    8、组数据如下表1-3表,试建立表,试建立y与与x之间的回归方程。之间的回归方程。 画出确定好的解释变量画出确定好的解释变量 和预报变量的散点图,和预报变量的散点图, 观察它们之间的关系观察它们之间的关系 (1)是否存在线性关系? (2)散点图具有哪种函数特征? (3)以指数函数模型为例,如何设模型函数? 非线性关系非线性关系 指数函数、二次函数、三次函数指数函数、二次函数、三次函数 0 50 100 150 200 250 300 350 202224262830323436 41 . 1图 温度温度 产卵数产卵数 . ,abxy 线性回归方程线性回归方程 我们称之为非我们称之为非时时当回归方程

    9、不是形如当回归方程不是形如 c c 2 1 设指数函数曲线 其中 和 是待定参数。 e c y x c 1 2 我们可以通过对数变换把指数关系变为线性关系 这样就可以利用线性回归模型来建立z 与x回归模型, 进而找到y与x的非线性回归方程 。 则变换后样本点分布在直线的周围。 令 ) c b , c ln a ( a bx z 2 1 y ln z 现在问题变为如何估计待定参数 和 ? c c 2 1 非线性回归模型非线性回归模型 . , 51 . 1.4151 . 1 用线性回归方程来拟合 因此可以一条直线的附近变换后的样本点分布在看出 中可以从图中数据的散点图给出了表 784.5745.4

    10、190.4178.3045.3398.2946.1z 35322927252321x 41表 0 1 2 3 4 5 6 7 202224262830323436 产卵数的对数 温度 51 . 1图 .843. 3272. 0 41 xz 到线性回归方程 中的数据得由表 图的样本数据表的数据可以得到变换后由表, 4131 (6) e y 0.272x-3.843 (1) 325115662421117y 12251024841729625529441t 51表 另一方面另一方面, ,可以认为图可以认为图1111- -4 4中样本点集中在某二次曲线中样本点集中在某二次曲线 因此可以对温度变量做变

    11、换因此可以对温度变量做变换, ,即令即令 然后建立然后建立y y与与t t 之间的线性回归方程之间的线性回归方程,从而得到从而得到y y与与x x之间的排线性回之间的排线性回 归方程归方程。 , 2 x t 的附近的附近, ,其中其中 和和 为待定参数为待定参数. . 4 3 c c 4 2 3 c x c y 表表1 1- -5 5是红铃虫的产卵数和对应的温度的平方是红铃虫的产卵数和对应的温度的平方,图图 1 1. .1 1- -6 6是相应的散点图是相应的散点图. . . , , , 61 . 1 4 2 3 下面介绍具体方法到还可以通过残差分析得 这个结论之间的关系与来拟合二次曲线 即不

    12、宜用合它 回归方程来拟 此不宜用线性 因直线的周围 不分布在一条 的散点图并 与可以看出 中从图 xycxcy t y 0 50 100 150 200 250 300 350 400500600700800900 1000 1100 1200 1300 温度的平方 数 卵 产 61 . 1图 中用线性回归模型拟合表的二次回归方程关于 下面建立的指数回归方程关于前面已经建立了方程 归需要建立两个相应的回残差为比较两个不同模型的 51. ,. , xy xy 7.54.202x367.0 y xy,54.202t367.0 y ty, 22 2 的二次回归方程为关于即 的线性回归方程关于得到的数

    13、据 的残差计算公式分别为 和则回归方程列的数据行第第表示表用 的拟合效果和个回归方程可以通过残差来比较两 7 6,1151 .76 ixi ; 7 , 2 , 1i ,ey y y e 843.3x272.0 i 1 i i 1 i .7 , 2 , 1i ,54.202x367.0y y y e 2 i i 2 i i 2 i .的拟合效果好7型 的拟合效果比模6因此模型,的残差的绝对值小7模型 的残差的绝对值显然比6模型从表中的数据可以看出 .残差的两个回归方程的给出了原始数据及相应61表 965.77268.58107.4041003835.5397.19693.47 e 928.321

    14、53.14889.8149.9760.1617.0518.0 e 325115662421117y 35322927252321x 2 1 61表 .7型的拟合效果远远优于模6因此模型 .432.15448 ,673.1450 的残差平方和分别为7和6算出模型 容易61由表.拟合的效果越好,残差平方和越小的模型 .合效果的大小来判断模型的拟两个模型的残差平方和 这时可以通过比较.则相反而另一些样本点的情况,的小 型差的绝对值比另一个模的残某些样本点上一个模型 原因是在.较困难比较两个模型的残差比,在一般情况下 21 QQ , b , x g y a , x f y 2 1 和和 对于给定的样本

    15、点 ,两个含有 未知数的模型 1122 , nn xyxyxy 其中a和b都是未知参数,可以按如下的步骤来比较它们 的拟合效果. . b a 其中 和 分别是参数a、b的估计值 (1)分别建立对应于两个模型的回归方程 , b , x g y 2 a , x f y 1 ; y y Q n 1 i 2 2 i i 2 Q 1 y y n 1 i 2 1 i i 与 (2)分别计算两个回归方程的残差平方和 . b , x g y a , x f y , ; b , x g y a , x f y , Q Q 2 1 2 1 2 1 的好 的效果不如 反之 的好 的效果比 则 (3)若 非线性回归问

    16、题的处理方法 (1)两个变量不呈线性关系,不能直接利用线性回归方 程建立两个变量的关系,可以通过变换的方法转化为 线性回归模型,如y= ,我们可以通过对数变换把指 数关系变为线性关系.令z=lny,则变换后样本点应该 分布在直线z=bx+a(a=lnc1,b=c2)的周围. 2 c x 1 c e (2)非线性回归方程的求法 根据原始数据(x,y)作出散点图; 根据散点图,选择恰当的拟合函数; 作恰当的变换,将其转化成线性函数,求线性回 归方程; 在的基础上通过相应的变换,即可得非线性回 归方程. (3)非线性相关问题中常见的几种线性变换 在实际问题中,常常要根据一批实验数据绘出 曲线,当曲线

    17、类型不具备线性相关关系时,可以 根据散点分布的形状与已知函数的图象进行比 较,确定曲线的类型,再作变量替换,将曲线改 为直线.下面是几种容易通过变量替换转化为 直线的函数模型: y=a+ ,y=a+ ,令令t= t= ,则有,则有y=a+bty=a+bt; y=axy=axb b,令,令z=ln yz=ln y,t=ln xt=ln x,m=ln am=ln a,则有,则有z=m+btz=m+bt; y=aey=aebx bx,令 ,令z=ln yz=ln y,m=ln a,m=ln a,则有则有z=m+btz=m+bt; y= ,y= ,令令z=ln y,t= z=ln y,t= ,m=ln

    18、 am=ln a,则有,则有z=m+btz=m+bt; y=a+bln xy=a+bln x,令,令t=ln xt=ln x,则有,则有z=a+btz=a+bt; y=bxy=bx2 2+a,+a,令令t=xt=x2 2,则有,则有y=bt+a.y=bt+a. b x 1 x b x ae 1 x 例例 某种食品每公斤的生产成本y(元)与该食品生产 的重量x(公斤)有关,经生产统计得到以下数据: x 1 2 3 5 10 20 30 50 100 200 y 10.15 5.52 4.08 2.8 5 2.11 1.62 1.41 1.30 1.21 1.15 通过以上数据判断该食品的成本y(

    19、元)与生产的重量 x(公斤)的倒数1/x之间是否具有线性相关关系?若有, 求出y关于1/x的回归直线方程,并借此估计一下生 产该食品500公斤时每公斤的生产成本是多少?(精 确到0.01) 分析 本题显然是非线性回归问题,题意通过研究 y 与1 x的 相关性,借助两者的线性相关关系得到 y 关于1 x的回归直线方程, 从而确定 y 与 x 的回归方程 解:设 u1 x,通过数据得到 y 与 u 的相应数据为: u1 x 1 0.5 0.33 0.2 0.1 0.05 0.03 0.02 0.01 0.005 y 10.15 5.52 4.08 2.85 2.11 1.62 1.41 1.30

    20、1.21 1.15 于是 y 与 1 x 的回归方程为 y 8.973 x 1.125. 当 x 500( 公斤 ) 时, y 8.973 500 1.125 1.14. 即估计生产该 食品 500 公斤时每公斤的生产成本是 1.14 元 1.设某大学的女生体重 y(单位:kg)与身高 x(单位:cm)具有线性相关关系, 根据一组样本数据(xi,yi)(i=1,2,n),用最小二乘法建立的回归方程为 =0.85x-85.71,则下列结论中不正确的是( ). A.y 与 x 具有正的线性相关关系 B.回归直线过样本点的中心(,) C.若该大学某女生身高增加 1 cm,则其体重约增加 0.85 k

    21、g D.若该大学某女生身高为 170 cm,则可断定其体重必为 58.79 kg 答案:D 解析:D 选项中,若该大学某女生身高为 170 cm,则可断定其体重约为 0.85170-85.71=58.79(kg). 故 D 不正确. X x 2.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身 高数据如下: 则y关于x的线性回归方程为( ). A.y=x-1 B.y=x+1 C.y=88+12x D.y=176 父亲身高父亲身高 x(cm) 174 176 176 176 178 儿子身高儿子身高 y(cm) 175 175 176 177 177 答案:C 解析:方法一:由线性回归直线

    22、方程过样本中心(176,176),排 除A,B答案,结合选项可得C为正确答案. 方法二:将表中的五组数值分别代入选项验证,可知 y=88+12x最适合. 3.在两个变量 y 与 x 的回归模型中,分别选择了 4 个不同的模型.通过计 算得 R2的值如下,其中拟合效果最好的模型是( ). A.模型 1 的 R2为 0.98 B.模型 2 的 R2为 0.80 C.模型 3 的 R2为 0.50 D.模型 4 的 R2为 0.25 答案:A 解析:R2越接近于 1,则该模型的拟合效果就越好,精度越高. x x 4.若对于变量 y 与 x 的 10 组统计数据的回归模型中,R2=0.95,又知残差

    23、平方和为 120.53,那么 =1 10 (yi-)2的值为 . 答案:2 410.6 解析:依题意有 0.95=1- 120.53 =1 10 (-)2 , 所以 =1 10 (yi-)2=2 410.6. x x 非线性回归问题有时并不给出经验公式非线性回归问题有时并不给出经验公式, ,这时我们可以画这时我们可以画 出已知数据的散点图出已知数据的散点图, ,把它与学过的各种函数把它与学过的各种函数( (幂函数、指数幂函数、指数 函数、对数函数函数、对数函数) )等图象作比较等图象作比较, ,挑选一种跟这些散点拟合得挑选一种跟这些散点拟合得 最好的函数最好的函数, ,然后采用适当的变量置换然后采用适当的变量置换, ,把问题化为线性回归把问题化为线性回归 分析问题分析问题, ,使之得到解决使之得到解决. . 敬请指导敬请指导 .

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高中数学人教A版选修1-2课件:1.1《回归分析》课时2 .ppt
    链接地址:https://www.163wenku.com/p-744922.html
    金钥匙文档
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库