书签 分享 收藏 举报 版权申诉 / 23
上传文档赚钱

类型高中数学(人教版A版必修一)配套课件:第一章 集合与函数的概念 1.3.1 第2课时.pptx

  • 上传人(卖家):金钥匙文档
  • 文档编号:744855
  • 上传时间:2020-09-15
  • 格式:PPTX
  • 页数:23
  • 大小:1,015.58KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高中数学(人教版A版必修一)配套课件:第一章 集合与函数的概念 1.3.1 第2课时.pptx》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高中数学人教版A版必修一配套课件:第一章 集合与函数的概念 1.3.1 第2课时 高中数学 人教版 必修 配套 课件 第一章 集合 函数 概念 1.3 课时 下载 _人教A版_数学_高中
    资源描述:

    1、第2课时 函数的最大(小)值 第一章 1.3.1 单调性与最大(小)值 1.理解函数的最大(小)值的概念及其几何意义; 2.会借助单调性求最值; 3.掌握求二次函数在闭区间上的最值. 问题导学 题型探究 达标检测 学习目标 问题导学 新知探究 点点落实 知识点一 函数的最大(小)值 思考 在下图表示的函数中,最大的函数值和最小的函数值分别是多 少?为什么不是最小值? 答案 答案 最大的函数值为4,最小的函数值为2.1没有A中的元素与之对应, 不是函数值. 一般地,设函数yf(x)的定义域为I.如果存在实数M满足:(1)对于任意 xI,都有f(x)M.(2)存在x0I,使得f(x0)M.那么,称

    2、M是函数yf(x) 的最大值. 如果存在实数M满足:(1)对于任意xI,都有f(x)M.(2)存在x0I,使 得f(x0)M.那么,称M是函数yf(x)的最小值. 知识点二 函数的最大(小)值的几何意义 思考 函数yx2,x1,1的图象如右: 答案 试指出函数的最大值、最小值和相应的x的值. 答案 x1时,y有最大值1,对应的点是图象中的最高点,x0时, y有最小值0,对应的点为图象中的最低点. 一般地,函数最大值对应图象中的最高点,最小值对应图象中的最低 点,它们不一定只有一个. 返回 题型探究 重点难点 个个击破 类型一 借助单调性求最值 例 1 已知函数 f(x) 2 x1(x2,6),

    3、求函数的最大值和最小值. 解析答案 反思与感悟 解析答案 跟踪训练 1 已知函数 f(x) x x21(x0),求函数的最大值和最小值. 类型二 求二次函数的最值 例2 (1)已知函数f(x)x22x3,若x0,2,求函数f(x)的最值; 解析答案 解 函数f(x)x22x3开口向上,对称轴x1, f(x)在0,1上单调递减,在1,2上单调递增,且f(0)f(2). f(x)maxf(0)f(2)3, f(x)minf(1)4. 解析答案 (2)已知函数f(x)x22x3,若xt,t2,求函数f(x)的最值; 解析答案 由(1)知yt22t3(t0)在0,1上单调递减, 在1,)上单调递增.

    4、当t1即x1时,f(x)min4,无最大值. (3)已知函数 f(x)x2 x3,求函数 f(x)的最值; 解 设 xt(t0),则 x2 x3t22t3. 解析答案 (4)“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高 点时爆裂.如果烟花距地面的高度h m与时间t s之间的关系为h(t) 4.9t214.7t18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这 时距地面的高度是多少?(精确到1 m) 反思与感悟 解析答案 跟踪训练2 (1)已知函数f(x)x42x23,求函数f(x)的最值; 解 设x2t(t0),则x42x23t22t3. yt22t3(t0)在0,1上单调递减

    5、,在1,)上单调递增. 当t1即x1时,f(x)min4,无最大值. (2)求二次函数f(x)x22ax2在2,4上的最小值; f(x)min 64a,a4. 解 函数图象的对称轴是xa, 当a4时,f(x)在2,4上是减函数, f(x)minf(4)188a. 当2a4时,f(x)minf(a)2a2. 解析答案 解析答案 (3)如图,某地要修建一个圆形的喷水池,水流在各个方向上以相同的抛 物线路径落下,以水池的中央为坐标原点,水平方向为 x 轴、竖直方向为 y轴建立平面直角坐标系.那么水流喷出的高度h(单位: m)与水平距离x(单 位:m)之间的函数关系式为 hx22x5 4,x0, 5

    6、2.求水流喷出的高 度 h 的最大值是多少? 类型三 函数最值的应用 例3 已知ax2xa0对任意x(0,)恒成立,求实数a的取值 范围. 解析答案 反思与感悟 解析答案 跟踪训练3 已知ax2x1对任意x(0,1恒成立,求实数a的取值范围. 解 x0,ax2x1 可化为 a 1 x2 1 x. 要使 a 1 x2 1 x对任意 x(0,1恒成立, 只需 a( 1 x2 1 x)min. 设 t1 x,x(0,1,t1. 1 x2 1 xt 2t(t1 2) 21 4. 当 t1 时,(t2t)min0,即 x1 时,( 1 x2 1 x)min0, a0. 返回 1 2 3 达标检测 4 5

    7、 答案 1.函数f(x)在2,2上的图象如图所示,则此函数的最小值,最大值分 别是( ) A.f(2),0 B.0,2 C.f(2),2 D.f(2),2 C 1 2 3 4 5 2.函数 yx1 在区间1 2,2上的最大值是( ) 答案 A.1 2 B.1 C.1 2 D.3 C 1 2 3 4 5 3.函数 f(x)1 x在1,)上( ) A.有最大值无最小值 B.有最小值无最大值 C.有最大值也有最小值 D.无最大值也无最小值 答案 A 1 2 3 4 5 4.函数f(x)x2,x2,1的最大值,最小值分别为( ) A.4,1 B.4,0 C.1,0 D.以上都不对 答案 B 1 2 3

    8、 4 5 5.函数 f(x) 2x6,x1,2, x7,x1,1, 则 f(x)的最大值, 最小值分别为( ) A.10,6 B.10,8 C.8,6 D.以上都不对 答案 A 规律与方法 (2)若函数f(x)在闭区间a,b上单调,则f(x)的最值必在区间端点处取 得.即最大值是f(a)或f(b),最小值是f(b)或f(a). 1.函数的最值与值域、单调性之间的联系 (1)对一个函数来说,其值域是确定的,但它不一定有最值,如函数 y1 x. 如果有最值,则最值一定是值域中的一个元素. 返回 2.二次函数在闭区间上的最值 探求二次函数在给定区间上的最值问题,一般要先作出yf(x)的草图, 然后根据图象的增减性进行研究.特别要注意二次函数的对称轴与所给 区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依 据,并且最大(小)值不一定在顶点处取得.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高中数学(人教版A版必修一)配套课件:第一章 集合与函数的概念 1.3.1 第2课时.pptx
    链接地址:https://www.163wenku.com/p-744855.html
    金钥匙文档
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库